
Construction and verification
of routing algebras

Alexander James Telford Gurney

30 April 2009

Darwin College
Computer Laboratory

This dissertation is submitted for the degree of Doctor of Philosophy

2

Declarations

• This dissertation is my own work and contains nothing which is the outcome
of work done in collaboration with others, except as specified in the text and
Acknowledgements.

• It is not substantially the same as any dissertation that I have submitted or
will be submitting for a degree or diploma or other qualification at any other
university.

• It does not exceed 60 000 words (including tables and footnotes, but excluding
appendices, bibliography, photographs and diagrams).

A. J. T. G.
2009–4–30

3

Summary

Standard algorithms are known for finding the best routes in a network, for some

given notion of route preference. Their operation succeeds when the preferences sat-

isfy certain criteria, which can be expressed algebraically. The Internet has provided

a wide variety of route-finding problems for which these criteria can be hard to verify,

and the ambitions of network operators and researchers are more diverse still.

One solution is to provide a formal means of describing route preferences in such

a way that their correctness criteria can be automatically verified. This thesis makes

the following contributions:

• It shows that analysis of generic route-finding algorithms can be separated

from study of the specific algebraic structures that encode route preferences.

This separation extends to more complex cases than are typically considered

in this context.

• Lexicographic choice is analyzed in detail, covering deduction rules for cor-

rectness criteria as well as its uses. Design constraints applicable to interdo-

main routing protocols are derived from a study of lexicographic choice for

hierarchical networks.

• Previous results on algorithmic correctness have been extended in two ways.

An account has been given of the relationship between two proof strategies for

finding the criteria associated with the existence of a Nash equilibrium. This

leads to a new proof which is both shorter and more general.

• Multipath routing has been incorporated into the algebraic framework. This

allows unified treatment of both single- and multipath algorithms: they are

the same, but instantiated over different algebras. Another application of the

mathematics allows a rigorous treatment of the handling of erroneous routes.

The examples and applications demonstrate the power of the algebraic approach in

permitting analysis of systems that would otherwise be much more difficult to treat.

4

Contents

Declarations 2

Summary 3

1 Introduction 6

2 Algebraic routing 10
2.1 Routing solutions and optimality criteria 12
2.2 Fundamental definitions 15
2.3 Algorithms and properties 25
2.4 Metalanguages 35

3 Minimal sets of paths 39
3.1 The distributive lattice connection 44
3.2 Reductions and congruences 48

4 Convergence for non-distributive algebras 55
4.1 Two convergence proofs 55
4.2 Ultrametrics and a new proof 69

5 Lexicographic choice 74
5.1 Lexicographic product in orders and monoids 76
5.2 Inference rules 82
5.3 Errors and infinities 93

6 Modelling network partitions 100
6.1 Network areas 101
6.2 The road to BGP 105
6.3 The scoped product 106
6.4 The road away from BGP 123

7 Conclusion 125

A Extended proofs 129
A.1 Convergence 129
A.2 Basic properties for the lexicographic product 130

CONTENTS 5

A.3 Properties for global optima 131
A.4 Properties for local optima 137
A.5 Reductions 142

Acknowledgements 144

Bibliography 145

6

Chapter 1

Introduction

The problem of finding the best path has captivated the interest of mathematicians

and engineers ever since it was discovered that even very large and complicated

pathfinding problems could be solved on a digital computer.

This problem has multiple origins, and a true unification of the efforts of dispar-

ate researchers and practitioners did not occur until the 1960s. Prior to that date, in-

dependent groups with different backgrounds and experiences tackled the pathfind-

ing problem each in their own way: operational researchers, electrical engineers,

recreational mathematicians, power engineers, cyberneticists and telephony engin-

eers all worked on various aspects of pathfinding, frequently without being aware of

the contributions being made by others.

Major theoretical work has since been done which places all of these previous

techniques into a single framework, using the language of graph theory and linear al-

gebra. The mathematics that we use is shaped by the fact that it has been developed

to solve particular problems. Historically, these have often been associated with new

technology. Our efforts are also informed by the need to carry out practical compu-

tation, and to prove that what we have done is correct.

The same pattern can be found today. Pathfinding, or routing, in the context

of the Internet is a demanding problem for many reasons: the network is large, di-

verse, under multiple ownership, and its continued operation is of immense import-

ance. Consequently, protocols for finding ‘optimal’ paths down which data might

flow have been developed and have accrued a great many extensions and complic-

ations; and this has outpaced traditional theory. Since we would like to design new

protocols with confidence, we have a problem. Without an adequate theory, it is

difficult to tell whether a proposed new technology will indeed compute what is de-

sired, or do it efficiently; and it is difficult to alter a design that is known not to work

correctly, without some guidance as to what precisely is going wrong.

We do have a substantial amount of practical experience with Internet techno-

1. INTRODUCTION 7

logy, and there are theoretical results for some important aspects of routing, at least

in specific cases. What is needed, however, is a way of going from the specific to the

general, so that we can understand not only the technology that we have, but what

we might have.

This thesis investigates several aspects of this goal:

1. We know several techniques for finding optimal paths when the definition

of optimality is such that different network participants would nevertheless

make the same choice: that is, if some node wishes to rank paths in a certain

way, then it must be that all of its neighbours would want it to make the same

choice. If preferences are not consistent in this way, then it still may be pos-

sible in some circumstances to find an assignment of paths to nodes that is in

a Nash equilibrium. Several special cases are known, but there is no known

rule for the most general case.

2. We need to understand the relationship between single-path and multipath

routing in algebraic terms. In the multipath scenario, each node may select

several equally-preferred paths at once. Operationally, this seems to make

sense; but it is not obvious whether or how the convergence criteria for the

single-path case carry across.

3. Routing preferences are often described as a combination of simpler prefer-

ence schemes, but the corresponding correctness analysis has not been de-

composed in the same way. We will treat the case of the lexicographic combin-

ation of routing algebras and derive compositional design rules.

4. It is common in networking, and ubiquitous in the Internet, to divide the net-

work into several zones, and to have different path selection rules for intra-

zone and inter-zone routes. How can we understand this algebraically, and

what correctness conditions apply?

In practical terms, the aim is to find design rules that can guide the process of cre-

ating a new routing metric. Beyond this, investigation of the mathematics and its

applications may yield new insight into the nature of the routing problem and our

ability to analyze routing situations.

Chapter 2 introduces the fundamental mathematical definitions which will be

needed throughout, as well as giving necessary background for Internet routing. It

establishes several principles that are used throughout this thesis:

1. INTRODUCTION 8

• Pathfinding algorithms intended for a specific setting can often be generalized

to operate over some given algebraic object, which encodes information about

path preference.

• Algebraic objects can often be defined compositionally in terms of simpler ob-

jects.

• Proofs about whether particular facts are true about a given object can be

based on the same compositional structure.

• It is sometimes useful to remove an axiom from a definition, so long as it can

be identified whether a given structure obeys that axiom or not.

This chapter also discusses the idea of a metalanguage that can be used to define

algebras for use in routing.

Routing with multiple paths is covered in Chapter 3. This chapter shows how

certain mathematical concepts, which have not previously been used in this context,

are useful in understanding the problem and its solution.

An important class of algorithms are those which yield Nash equilibria: in fact,

these are the standard pathfinding algorithms when used with algebras having a

certain property. Some proofs are known for special cases of when this is possible.

Chapter 4 presents a new proof that covers more cases and is significantly less com-

plicated than previous efforts. It also relates previous proofs for the asynchronous

message-passing setting to the standard setting that uses linear algebra.

Chapters 5 and 6 present comprehensive accounts of several important ways of

building new algebras for routing. Lexicographic choice is covered in Chapter 5, in-

cluding if-and-only-if deduction rules for the key algebraic properties. This is ex-

tended in Chapter 6 to an investigation of routing based on network areas; such

schemes incorporate lexicographic choice but present new problems. In addition

to deduction rules, this chapter looks at the Border Gateway Protocol: it shows that

some operational issues observed with BGP are intrinsic to the problem of interdo-

main routing, and identifies certain modifications that are safe or unsafe to make to

the protocol.

Some of the material in this thesis has been published elsewhere.

• Many of the definitions and theorems in Chapters 5 and 6, as well as one of the

proofs in Appendix A, appear in the paper of Gurney and Griffin (2007).

1. INTRODUCTION 9

• The paper of Griffin and Gurney (2008) includes material related to Chapter 4,

but the main theorems of that chapter do not appear in the paper.

Both of these papers duplicate some of the definitions used in Chapter 2.

10

Chapter 2

Algebraic routing

Ever since routing protocols were first being designed, there has been a sense in the

community that a more modular approach would serve us better than the mono-

lithic architectures we have tended to produce. There are many ways in which this

might be envisaged: modularity of design is not the same thing as modularity of

implementation. The genuinely difficult task of creating router software and hard-

ware that is ‘pluggable’ or ‘programmable’ has received much attention, and there

are many gains to be made in this area even without making changes to the protocol

suite. This thesis is concerned with an algebraic approach to routing, and the use of

mathematical means to justify design decisions about the operation of routing pro-

tocols. That approach does not require any particular implementation to be built in

a modular or programmable way, although this might still be a good idea for other

reasons. Rather, it gives us a better conceptual grasp on how existing or future sys-

tems might work.

An ARPANET pioneer once wrote,

Hopefully, a structured approach to understanding, analyzing and syn-

thesizing routing algorithms will make the task of adapting to changing

circumstances an easier one. (McQuillan 1974).

This approach is what algebraic routing is intended to be.

The fundamental idea is to separate the decision process from the database man-

agement. A typical routing protocol specification will contain many details about

just how route information is communicated, how databases are maintained, and

so on; but the ‘brains’ of each protocol is still the part which decides which of the

given routes is to be preferred. We make a clear distinction between these concerns.

Again, we are following long-established principles of protocol design. For example,

McQuillan, Richer and Rosen (1980) described distributed routing as a combination

of three components, for measurement, dissemination, and calculation. Although

2. ALGEBRAIC ROUTING 11

dynamic response to measured network characteristics has often been found to be

undesirable, distinguishing between these protocol components has clearly been a

long-standing goal.

The metarouting approach is based upon a particular perception of routing. At

the most basic level, we consider that the routing process and in particular the de-

cision procedure is something that can be semantically rich. We are not limited to

solving a simple numerical shortest paths problem: there is a wide choice of informa-

tion that can be associated with a route, and many ways of using that information to

make decisions, and those decisions can lead to more than one kind of optimal res-

ult. The fact that this complexity exists means that we need to come up with some

means for managing it. This includes having a formal notation and semantics for

routing problems. We will be able to use these semantics to draw conclusions about

particular instances of routing problems, in a formal or even a mechanized way.

In the context of networking, the routing process exists in order to automate the

creation of forwarding tables; these tables give rules for how each router is to deal

with data which it receives. Forwarding does not intrinsically require routing, since

tables could be partly or entirely determined manually (as was the case in early tele-

phony). Whether manual or automatic, the routing problem is to find paths for data

transit, according to some given constraints.

In the more general setting, the purpose of the computation might be different. It

could be that we are seeking not simply a path, but some more complicated pattern

of data transmission. Alternatively, we might just be trying to compute aggregate

information about the network, not a path through it. The path-finding idea will

however be taken as the main motivation.

Network management as an engineering process involves the attempt by operat-

ors to realize their intentions about how network traffic should behave. This is done

by creating the physical network and configuring the protocol machinery. Now, op-

erators’ intentions may not be particularly precise and may not be formalized in all

respects. Even if they are, it is not an easy task to translate these requirements into

a network configuration: constraints of the technology may not allow a network to

behave in the way an operator would like. Configuring a network can be seen as

translating traffic engineering intentions into the ‘language’ of network protocols

and equipment. Different systems will present different possibilities for how this

might be done. In the crudest sense, if a network operator wants traffic to flow down

one path rather than another, then he or she can alter the link weights so that the

dynamic operation of the routing protocol will select the desired route. In practice,

2. ALGEBRAIC ROUTING 12

especially for large networks, the intent of operators will be more nuanced and dif-

ficult to express; engineering expertise may be required to select appropriate trade-

offs between conflicting high-level goals.

We will use the term routing language to refer to the ensemble of configuration

possibilities admitted by real-world network equipment in relation to routing. This

is inherently an informal characterization, because only some aspects of the techno-

logy are amenable to a formal treatment. The concept of routing language is further

idealized since not all aspects of a particular network configuration can be expec-

ted to arise as the result of deliberate choices made by the operator. It nevertheless

opens the possibility of comparing different routing languages with respect to their

expressivity, treated separately from questions of operator intent.

We will use routing algebras to formalize certain aspects of routing language. A

particular routing algebra will specify what data is associated with each path, and

provide operations for manipulating that data (for the purpose of computing ‘op-

timal’ paths).

A routing problem will mean an instance of a pathfinding problem, using some

routing algebra. It consists of a graph, with labelled edges over an algebra, together

with a definition of ‘optimal path assignment’ given in terms of the symbols of the

algebra. Using algebra for this is not new, although it is only comparatively recently

that the scope of this approach has been broadened from the traditional semiring

model; see for example Griffin, Shepherd and Wilfong (2002).

The main difference is that the algebras we will consider will themselves have

been constructed according to a well-defined metalanguage. Each expression in this

metalanguage will define some unique routing algebra. This idea is explored further

in Section 2.4. The other parts of this chapter will explore the algebraic foundations

of routing.

2.1 Routing solutions and optimality criteria

How are we to understand routing? There are several possible points of view that will

help to explain certain aspects of the problem.

• Someone who is running a routing protocol, as a participant in the distrib-

uted route-finding process, wants to obtain the ‘optimal’ routes to every other

participant, and to be be able to receive traffic in return. The definition of

‘optimal’ may vary, and different participants may have different ideas about

2. ALGEBRAIC ROUTING 13

which routes are preferable. From this perspective, there is a lack of global

knowledge or global control, (even in the case of link-state protocols). The

network participants must individually trust the routing process to deliver the

routing data which is desired.

• The designer of a routing protocol must lay down the rules that are to be fol-

lowed by these individual participants. Great care must be taken in ensuring

that the process is correct and can be correctly and efficiently implemented.

• A vendor of routing equipment is obliged to implement common protocols

(or design their own), but they have considerable flexibility in implementation

techniques and the provision of extensions. The correctness and efficiency of

a routing protocol and its implementation are of major concern to vendors, so

that their products will be attractive to customers.

To these we can add a metarouting perspective: we want to establish a common lan-

guage and set of tools to allow discussion and solution of design problems in rout-

ing. This means that we will not always be taking the point of view of the protocol

designer; rather, we are trying to support the designer in the task of creating a pro-

tocol.

A central question is: How do we know which routes are the best? Once we have

established a mathematical model of route choice, we will be able to characterize

what route optimality might mean, and prove that various design choices do or do

not lead to optimality in all circumstances.

Our basic model of the network is a graph. The nodes of the graph represent

routers, and the arcs are physical or logical connections between routers; see Fig-

ure 2.1. It is possible that this model will need to be altered or extended to deal with

additional facets of Internet routing; for example, there is neither an inherent no-

tion of partitioning, nor an architecture for naming and addressing. For now, we will

assume that the graph model is sufficient. We will also assume that all graphs are

finite—that is, that there are only finitely many nodes—and that there can be no arc

from a node to itself.

In the attempt to generalize shortest-path algorithms to best-path algorithms,

various mathematical structures have been proposed to replace the original use of

natural numbers as path weights. However, there does not appear to be a single

most-general structure which covers all known examples of best-path algorithms.

For example, in Dijkstra’s algorithm (discussed further in Section 2.3), there are two

operations which are applied to path weights:

2. ALGEBRAIC ROUTING 14

A

B

C

D

E

Figure 2.1 A directed graph

1. Extending the weight of a path by the weight of a new link, by adding the two

numbers together.

2. Comparing the weights of two paths with (≤), to see whether a current best-

path estimate should be replaced by an alternative route.

Alternatively, the comparison operation can be replaced by the use of a binary min-

imum operator, which returns the smaller of its two arguments. For natural number

weights, as in the original formulation, these amount to the same thing: they are

equivalent ways of finding the least of two numbers. If weights are not natural num-

bers, then this relationship may no longer hold. For example, it may not always be

possible to decide which of two weights is better: in this case, some further effort

is needed in the design of the algorithm, to deal with the new situation. Similarly,

there may be a binary operator (such as set union) for which the result is different

from either of its operands—it must be decided whether this is appropriate for the

algorithm and for the problem at hand. So even for the comparatively simple al-

gorithm of Dijkstra, there is already a difficulty in establishing a model that is inten-

ded to cover a great many potential choices for path preference.

In order to discuss these models in detail, some basic mathematical terminology

will need to be introduced. The content of the definitions in the next section is stand-

ard, but the names attached to some of the definitions are not universally recognized,

since they have not been used consistently by previous authors. This is indicated in

each case.

2. ALGEBRAIC ROUTING 15

Symbol Interpretation

N Natural numbers (starting with zero)
N∞ Natural numbers, plus infinity
Z Integers
R Real numbers
R≥0 Positive real numbers (including zero)
R∞
≥0 Positive real numbers, plus infinity

Figure 2.2 Standard number sets

2.2 Fundamental definitions

We first introduce some notation.

• The constant function with value a will be denoted ‘κa ’; so κa(b) = a for all b.

• Anonymous functions are written as lambda expressions, so for example ‘λx .

x +1’ is the function that takes its argument x to x +1.

• If f is a function from a set A to a set B, and X is a subset of A, then we will

write ‘ f (X)’ for the set
{

f (x)
∣∣ x ∈ X

}
.

• If A is a set then ‘℘A’ denotes its power set (the set of all subsets of A).

• The symbols ‘t’ and ‘u’ will be used for the binary operations of numeric min-

imum and maximum (for example, 3t5 = 3 = 3u1).

Figure 2.2 shows the notation that will be used for standard number sets. The asymp-

totic complexity symbol O has the following interpretation:

Definition 2.1. If f and g are functions from N to R≥0, then ‘ f ∈ O(g)’ or ‘ f (n) ∈
O(g (n))’ means that there exist constants c ∈ R≥0 and k ∈N such that f (n) ≤ c · g (n)

whenever n > k.

2.2.1 Semigroups

Definition 2.2. A semigroup consists of a set and an associative binary operation; so,

if (S,⊕) is a semigroup, then

a ⊕ (b ⊕ c) = (a ⊕b)⊕ c

for all a, b and c in S.

2. ALGEBRAIC ROUTING 16

Definition 2.3. A semigroup (S,⊕) is commutative if

∀a, b ∈ S : a ⊕b = b ⊕a.

Definition 2.4. If (S,⊕) is a semigroup and

∀a ∈ S : a = a ⊕a,

then it is said to be idempotent or a band. A commutative idempotent semigroup is

called a semilattice.

Definition 2.5. A semigroup (S,⊕) may have some special elements.

• If i is an element of S with i ⊕ s = s for all s, then i is said to be a left identity.

• Dually, if s = s ⊕ i for all s, then i is a right identity.

• An element that is both a left and a right identity is called simply an identity.

• If z is an element of S and z = z ⊕ s for all s, then z is called a left zero or left

annihilator.

• Dually, if s ⊕ z = z for all s then z is a right zero or right annihilator.

• An element that is both a left and a right zero is called a zero or annihilator

If a two-sided identity exists then it is unique, and the semigroup is called a monoid.

Definition 2.6. A semigroup (S,⊕) is left cancellative if

∀a, b, c ∈ S : c ⊕a = c ⊕b =⇒ a = b;

it is right cancellative if

∀a, b, c ∈ S : a ⊕ c = b ⊕ c =⇒ a = b,

and cancellative if it is both left and right cancellative.

Definition 2.7. A semigroup (S,⊕) is 0-cancellative if it has an annihilator 0 and

∀a, b, c ∈ S : ((c ⊕a = c ⊕b 6= 0)∨ (a ⊕ c = b ⊕ c 6= 0)) =⇒ a = b

Definition 2.8. A semigroup (S,C) is a left zero semigroup if every element is a left

zero; that is, if a C b = a for every a and b in S. Similarly, (S,B) is a right zero semig-

roup if every element is a right zero.

2. ALGEBRAIC ROUTING 17

In this thesis, the symbols ‘C’ and ‘B’ will always stand for the binary operators

a C b
def= a (2.1)

a B b
def= b (2.2)

respectively.

Definition 2.9. A semigroup (S,⊕) is left condensed if a ⊕b = a ⊕ c for all a, b and c

in S. Similarly, it is right condensed if b ⊕a = c ⊕a for all a, B and c in S.

Note that a left zero semigroup is always left condensed, but the converse is not

necessarily true. Likewise, a right zero semigroup is always right condensed, but

there are right condensed semigroups that are not right zero semigroups.

Definition 2.10. A bisemigroup is a set S together with two associative binary opera-

tions ⊕ and ⊗; and so (S,⊕) and (S,⊗) are both semigroups.

Definition 2.11. A semiring is a bisemigroup (S,⊕,⊗) with the additional properties

that:

1. ⊕ is commutative;

2. ⊗ distributes over ⊕: c ⊗ (a ⊕b) = (c ⊗a)⊕ (c ⊗b) for all a, b and c in S;

3. ⊕ has an identity, which is also an annihilator for ⊗;

4. ⊗ has an identity.

Several related structures have been studied, sharing the same fundamental idea

of a set with two related operations, but differing in the axioms which are required.

The terminology is not fully standard: the name ‘semiring’ has been applied not

only to the definition above, but also to various other definitions with subtle dif-

ferences. A comprehensive account of the terms used in the literature is given by

Głazek (2002).

If (S,⊕,⊗) is a semiring, then we can form the semiring (Mn(S),⊕, ·) of n by n

matrices over S, where

(A⊕B)i j
def= Ai j ⊕Bi j

(A ·B)i j
def= ⊕

k∈N

(Ai k ⊗Bk j).

2. ALGEBRAIC ROUTING 18

The semiring axioms are straightforward to verify. The identity for (Mn(S),⊕) is the

matrix all of whose entries are ∞, where ∞ is the identity for (S,⊕). The identity for

(Mn(S), ·) is the matrix I given by

Ii j =
1 i = j

∞ i 6= j ,

where 1 is the identity for (S,⊗).

Definition 2.12. The closure of a matrix A is given by

A∗ def= I ⊕ A⊕ A2 ⊕ A3 ⊕·· · = ⊕
k≥0

Ak .

This solves the fixed-point equation X = A ·X ⊕ I , just as in regular languages

a∗ = ε+a +aa +aaa +·· · solves x = ax +ε.

2.2.2 Order theory

Definition 2.13. A relation on a set S is a subset of S ×S. If R is a relation on S, we

write ‘a R b’ for ‘(a, b) ∈ R’.

Definition 2.14. A binary relation ¹ on a set S may have some, all, or none of the

following properties:

reflexivity a ¹ a (2.3)

symmetry a ¹ b =⇒ b ¹ a (2.4)

antisymmetry (a ¹ b ∧b ¹ a) =⇒ a = b (2.5)

transitivity (a ¹ b ∧b ¹ c) =⇒ a ¹ c (2.6)

totality a ¹ b ∨b ¹ a (2.7)

where each free variable is universally quantified.

Definition 2.15. Some relations with particular combinations of properties have

special names:

preorder reflexive, transitive

equivalence relation reflexive, symmetric, transitive

partial order reflexive, antisymmetric, transitive

preference relation reflexive, transitive, total

linear order reflexive, antisymmetric, transitive, total.

2. ALGEBRAIC ROUTING 19

From a given preorder, there are several useful derived relations which can be

constructed. If (¹S) is a preorder on S then (≺S), (∼S) and (#S) are defined as follows:

a ≺S b
def⇐⇒ a ¹S b ∧¬(b ¹S a) (2.8)

a ∼S b
def⇐⇒ a ¹S b ∧b ¹S a (2.9)

a #S b
def⇐⇒ ¬(a ¹S b)∧¬(b ¹S a). (2.10)

The (≺S) relation is the strict version of (¹S), indicating when one element is pre-

ferred to another and they are not equivalent. The relation (∼S) provides the equival-

ence: note that (¹S) arises as the union of (≺S) and (∼S). Finally, (#S) indicates when

two elements are incomparable, meaning that neither is preferred to the other. The

distinction between equivalence and incomparability is subtle: the former typically

means that elements are of equal quality, whereas the latter means that their relative

merits cannot be assessed.

Definition 2.16. A chain in a set S, with a binary relation (¹), is a subset A of S for

which the restriction of (¹) to A is a linear order.

Definition 2.17. An antichain in a set S, with a binary relation (¹), is a subset A of S

such that for all distinct a and b in A, ¬(a ¹ b).

Definition 2.18. Let (S,≤) be a preorder. S satisfies the descending chain condition

(DCC) if there is no infinite chain s1 > s2 > s3 > s4 > s5 > ·· · of elements of S. If (S,≤)

satisfies the DCC then we say that (≤) is well-founded.

The DCC guarantees that every subset of S has a minimal element—perhaps

more than one. Here, a ∈ A ⊆ S is minimal in A if and only if there is no b in A such

that b < a. Conversely, any preorder in which every subset has a minimal element

satisfies the DCC.

Theorem 2.1. Let (S,⊕) be a semilattice. Then

a ≤L b
def⇐⇒ a = a ⊕b

a ≤R b
def⇐⇒ b = b ⊕a

are partial orders, and they are dual to one another.

Proof. We first show that the relations are dual:

a ≤L b ⇐⇒ a = a ⊕b ⇐⇒ b ≤R a.

2. ALGEBRAIC ROUTING 20

Now, if we can prove that (≤L) is a partial order, then it will follow that its dual (≤R) is

also a partial order. We need to prove reflexivity, antisymmetry and transitivity.

• For all a, because S is idempotent, we have a = a ⊕a; so (≤L) is reflexive.

• Suppose that a ≤L b and b ≤L a. Then a = a ⊕ b and b = b ⊕ a. Because S is

commutative, a ⊕b = b ⊕a, so a = b and (≤L) is antisymmetric.

• Suppose that a ≤L b and b ≤L c. Then a = a ⊕ b and b = b ⊕ c. Now, a ⊕ c =
(a ⊕b)⊕ c = a ⊕ (b ⊕ c) = a ⊕b = a, so a ≤L c. This shows transitivity.

Therefore, both relations are partial orders.

These two partial orders are called the natural orders derived from ⊕. We will

normally use the left natural order, ≤L. There are alternative definitions of natural

order which apply to other kinds of semigroup, but for the purposes of this thesis we

will only need to use the definition for semilattices.

Definition 2.19. If x and y are elements of a preorder (S,¹) and z ¹ x and z ¹ y , then

z is called a lower bound of x and y . If z is the maximal element of the set of lower

bounds of x and y , then it is called the greatest lower bound. An order in which any

two elements have a greatest lower bound is called complete.

Theorem 2.2. Let (S,≤) be a complete partial order and define ⊕ so that a ⊕ b is the

greatest lower bound of a and b. Then (S,⊕) is a semilattice, and the left natural order

over it is (≤) itself.

Proof. The operation ⊕ is certainly associative, commutative and idempotent, by

definition of greatest lower bounds; and the fact that greatest lower bounds always

exists ensures that it is well-defined. Now,

a = a ⊕b

⇐⇒ a ≤ a ∧a ≤ b ∧ (c ≤ a ∧ c ≤ b =⇒ c ≤ a)

⇐⇒ a ≤ b

so the left natural order coincides with (≤).

Definition 2.20. An equivalence relation (∼) on a semigroup (S,⊕) is a congruence if

a ∼ b =⇒ (a ⊕ c) ∼ (b ⊕ c)

∧ (c ⊕a) ∼ (c ⊕b)

for all a, b and c in S.

2. ALGEBRAIC ROUTING 21

a a b

meet

a b

a ` b

join

Figure 2.3 Meets and joins in a lattice.

Definition 2.21. If (∼) is a congruence on (S,⊕) then we can form the quotient (S/ ∼
,⊕′), which is a semigroup. Its elements are the equivalence classes of S. If ρ is the

function taking an element to its equivalence class, then

ρ(a)⊕′ ρ(b)
def= ρ(a ⊕b)

for all a and b in S: because (∼) is a congruence, this is sufficient to define (⊕′) and

ensure that S/ ∼ is a semigroup.

Definition 2.22. A partial order is a lattice if any two elements have a greatest lower

bound and a least upper bound. Alternatively: (S,a,`) is a lattice if (S,a) and (S,`)

are semilattices. Then a is called the meet and ` the join operation—see Figure 2.3.

Definition 2.23. A partial order is bounded if it has a least element and a greatest

element.

Definition 2.24. A lattice (S,a,`) is distributive if

1. c a (a ` b) = (c a a) ` (c a b) and

2. c ` (a a b) = (c ` a) a (c ` b)

for all elements a, b and c of S.

Definition 2.25. An element c of a semilattice (S,⊕) is prime if and only if

∀a, b ∈ S : c = a ⊕b =⇒ (c = a ∨ c = b)

2. ALGEBRAIC ROUTING 22

and c is not the identity of S. Equally, an element of a lattice (S,a,`) is meet-prime

if it is prime in the semilattice (S,a).

Definition 2.26. In a partial order (S,≤), an upper set is any subset A of S which is

upward closed; that is, if x is in A and x ≤ y , then y is also in A.

Note that the empty set is, vacuously, an upper set. The upper sets of an order

are closed under the operations of union and intersection, and therefore form a dis-

tributive lattice.

Definition 2.27. In a partial order (S,≤), a filter is a subset A of S which is an upper

set, and is closed under taking greatest lower bounds: so if x and y are in A, then

x a y exists and is in A.

Definition 2.28. For an element x of a partial order (S,≤), the set

↑x
def= {

y ∈ S
∣∣ x ≤ y

}
is the principal filter generated by x. Since this is necessarily an upper set, we will

still call ↑x the principal upper set in cases when S does not have greatest lower

bounds.

If A is a subset of (S,≤) then take ↑A to be the union of all sets ↑x for x in A.

Figure 2.4 illustrates this definition.

w

↑w

x
y

z

↑{
x, y, z

}

Figure 2.4 An element and its upper set; an upper set that is the union of three
principal upper sets.

Definition 2.29. If (S,≤) is a partial order, and (S,≤L) is a linear order such that

∀x, y ∈ S : x ≤ y =⇒ x ≤L y

then (≤L) is a linear extension or linearization of (≤).

2. ALGEBRAIC ROUTING 23

Theorem 2.3. Every partial order has a linearization. Furthermore, if x # y in a par-

tial order (S,≤) then there is a linearization (≤L) of (≤) in which x <L y.

Proof. This was proved by Szpilrajn (1930).

2.2.3 Graphs

Definition 2.30. A graph consists of a set N of nodes together with a binary relation

E on N . Elements of E are arcs.

If E is symmetric then the graph is undirected; otherwise it is directed. A graph is

simple if E is irreflexive.

If i is a node, then write

i E
def= {

j ∈ N
∣∣ (i , j) ∈ E

}
(2.11)

Ei
def= {

j ∈ N
∣∣ (j , i) ∈ E

}
(2.12)

for the sets of nodes to which i is connected by outgoing and incoming arcs respect-

ively.

Definition 2.31. If G = (N ,E) is a graph, then a sequence [n1, n2, . . . , nk] is a path if

ni E ni+1 for all i with 1 ≤ i < k. It is a cycle if n1 = nk . It is a simple path if all nodes

are distinct.

Definition 2.32. A weighted graph is a graph equipped with a function w : E −→ S,

where S is some set.

The set S which provides the arc weights will probably have defined over it either

an order (indicating preference) or a binary operator (encoding preference-based

choice). If (S,¹) is a preorder, then it is always possible to adjoin a least-preferred ele-

ment, if one is not already present: take S′ def= S∪ {∞} and (¹′) = (¹)∪{
(x,∞)

∣∣ x ∈ S′},

where ∞ is not in S. Then ∞ is the topmost or maximal element of the new order.

Likewise, if (S,⊕) is a semigroup, then a new two-sided zero can be adjoined,

which in the natural order derived from (⊕) will be the greatest element. If this is

done, then we can take w to be defined on the whole of N ×N , with w(i , j) =∞ if

(i , j) is not in E .

Definition 2.33. If G = (N ,E) is weighted by w : E −→ (S,⊗), then the weight of a

path [n1, n2, . . . , nk] is given by

w(n1, n2)⊗w(n2, n3)⊗·· ·⊗w(nk−1, nk).

2. ALGEBRAIC ROUTING 24

We write w(p) for this expression if p is a path.

Definition 2.34. If G = (N ,E) is weighted by w : E −→ (S,¹), then a path p in G is a

shortest path if there is no path q, having the same first node and the same last node

as p, for which w(q) ≺ w(p).

Likewise, if w is a function into (S,⊕), then p is a shortest path if there is no

path q, having the same first node and the same last node as p, for which w(q) =
w(q)⊕w(p).

Definition 2.35. The adjacency matrix of a graph G = (N ,E) is the N by N matrix A

with Ai j = 1 if i E j , and Ai j = 0 if ¬(i E j), for all i and j in N . (In fact, this is just a

concrete representation of the E relation.)

If G is weighted by w : E −→ S, and S has a two-sided zero ∞ then the adjacency

matrix A of G is given by

Ai j =
w(i , j) i E j

∞ ¬(i E j)

for all i and j in N .

It is also possible to use functions as the arc labels of a graph. These are com-

posed along each path, but they may also be applied to values originated at the

source node. Algebras like this can be defined over semigroups or over orders; here,

these are called semigroup transforms and order transforms respectively. Semigroup

transforms include the algebras of endomorphisms of Gondran and Minoux (2001),

but are more general since the functions here are not required to be endomorphisms

of the given semigroup. The class of order transforms is similar to the algebras used

by Sobrinho (2005) and Griffin and Sobrinho (2005).

Definition 2.36. A structure (S,⊕,F) is a semigroup transform if (S,⊕) is a semigroup

and F is a set of functions from S to S.

Definition 2.37. A structure (S,¹,F) is an order transform if (S,¹) is a preorder and

F is a set of functions from S to S.

Both of these structures are related to actions over semigroups or orders. An ac-

tion of a semigroup (A,⊗) on a set X is an operation

? : A×X −→ X

for which (a ⊗ b)? x = a ? (b ? x) for all a and b in A and x in X ; there are similar

conditions for actions of other structures. See Kilp, Knauer and Mikhalev (2000) for

a thorough account of monoid actions.

2. ALGEBRAIC ROUTING 25

The canonical example is that A might be a set of endofunctions on X , with (⊗)

being composition and (?) being function application. This is essentially what the

definition of a semigroup transform provides, though the action is on a semigroup

(S,⊕) rather than on a set. Semigroup transforms also incorporate bisemigroups

(and semirings) since another standard example is a semigroup acting on itself by

multiplication: (?) and (⊗) are the same, as are A and X . From the function view-

point, a semigroup transform is constructed from a bisemigroup by choosing F to

be {
λy . x ⊗ y

∣∣ x ∈ S
}

.

The relationship between order semigroups and order transforms is similar.

2.3 Algorithms and properties

It is difficult to identify the origin of pathfinding algorithms. The task is somewhat

like trying to find the source of a river; there are many beginnings, and in many cases

it is not obvious whether the earliest research should be counted as part of the field

as it is currently recognized. It is safe to say that methods for finding optimal paths

in weighted graphs have been a topic of serious investigation since at least the 1950s;

related work was carried out during the previous several decades, but did not at that

stage form part of a unified research agenda.

This research has produced algorithms in two families, which we here refer to

as the Dijkstra and Bellman-Ford traditions. A third strand of research is associated

with Stephen Kleene’s work on regular languages and automata (Kleene 1956); the

construction of the deterministic finite automaton for a given regular expression,

has since been reinterpreted as a special case of the Floyd-Warshall algorithm (Rote

1985). It is now recognized that all of these techniques can be seen as solving the

same ‘shortest paths’ problem, even though they originate from different domains

of application. In recent years, work on the shortest path problem has concentrated

on three main areas:

1. Techniques for the efficient implementation of shortest-path algorithms, es-

pecially for the special case in which path weights are natural numbers with a

known upper bound. There are also special algorithms using a heuristic which

are applicable for certain kinds of navigational problems.

2. Generalized or algebraic treatments of the problem, resulting in generic ‘best

path’ algorithms, with finding the shortest path as one special case among

2. ALGEBRAIC ROUTING 26

many other interpretations, dependent upon the choice of algebra.

3. Implementation of shortest-path or best-path algorithms in a distributed fash-

ion, and associated problems in complexity and network dynamics.

There are other path problems which are related to finding the best path. These

include:

• The minimum spanning tree problem: given a connected weighted graph, find

a subgraph which connects all of the nodes (a spanning tree) and which has

minimal weight among all spanning trees.

• The Steiner tree problem: given a weighted graph G and a subset M of its nodes,

find a subgraph of G that spans M , and has minimal weight among all such

subgraphs. The geometric Steiner problem is related: given several points in a

metric space, find a minimal tree which connects them all.

• The Hamiltonian path problem: find a path which connects all nodes, does

not pass through any node more than once, and which has minimal weight. A

related problem is to find a cycle with the same properties.

• The Eulerian cycle problem: find a cycle in which each arc in the graph appears

exactly once.

Although these can look quite similar to the best-path problem, this is deceptive:

their complexity properties are different, as are the algorithmic techniques used to

solve them.

We will now discuss the well-known Dijkstra and Bellman-Ford algorithms in de-

tail. The algorithm of Dijkstra (1959), a refinement of the method of Moore (1959),

is essentially combinatorial in nature. Dijkstra’s insight was that it is possible to find

shortest paths (at least when arc weights are natural numbers) by examining each

arc once and only once, if they are taken in the correct order. This is only possible

when arcs of negative weight cannot occur (Cormen, Leiserson and Rivest 1990). See

Figure 2.5.

The efficiency of Dijkstra’s algorithm depends on the method used to select the

next node from the queue of unprocessed nodes. There is a known equivalence

between priority queues and sorting, the most complete version of which is due

to Thorup (2007). This equivalence states that if n keys can be sorted in S(n) time per

key, then a priority queue can be built for which extraction of the minimal element

2. ALGEBRAIC ROUTING 27

d(0) := 0
for n in N \ {0}:

d(n) :=∞

Q := N
while Q is not empty:

choose i from Q so that d(i) ≤ d(j) for any j in Q
Q :=Q \ {i }
for each j in i E :

d(j) = min{d(j), d(i)+w(i , j)}

Figure 2.5 Pseudocode for Dijkstra’s algorithm

takes O(S(n)) time, and vice versa. The resulting complexity for Dijkstra’s algorithm

will be O(|E |+ |N |S(|N |)).

For example, since pure comparison-based sorting of n keys is in O(n log n), the

most generic form of Dijkstra’s algorithm has worst-case running time in O(|E | +
|N | log |N |). This was achieved by Fredman and Tarjan (1987) using Fibonacci heaps.

Note that if the graph is dense, so that |E | is close to |N |2, then a naive linked-list

implementation with running time in O(|N |2) has comparable asymptotic perform-

ance to the Fredman-Tarjan version.

The running time can be reduced even further if arc weights are integers and

an upper bound on path weight is known, as non-comparison-based methods can

then be used; for example, the algorithm of Fredman and Willard (1994) has S(n) =
log n/loglog n, and that of Ahuja et al. (1990) has S(n) =√

logC where C is the max-

imum possible path weight. Which of these two methods is faster depends on the

relationship between |N | and C . Similarly, use of randomization, hashing, pointer

arithmetic and other techniques can yield better complexity bounds, but at the cost

of only being applicable to more specific versions of the shortest-path problem.

Dijkstra’s algorithm can only be correctly applied when no arc weight is negat-

ive. If negative arcs are possible, but there are no negative-weight cycles, then the

Bellman-Ford algorithm can be used instead. This was developed separately by Ford

and Fulkerson (1956) and by Bellman (1958). See Figure 2.6 for the pseudocode.

These algorithms are only for finding single-source shortest paths, as opposed to

shortest paths between all pairs of nodes. One could run an algorithm repeatedly,

once for each node in the graph, in order to obtain shortest paths for each origin-

destination pair. There are various other ways in which the all-pairs solution can be

2. ALGEBRAIC ROUTING 28

d(0) := 0
for n in N \ {0}:

d(n) :=∞

repeat |N |−1 times:
for each (i , j) in E :

d(j) := min
{

d(i), d(i)+w(i , j)
}

Figure 2.6 Pseudocode for the Bellman-Ford algorithm

for each (i , j) in N ×N :
if (i , j) is in E then:

d(i , j) := w(i , j)
else:

d(i , j) := 0

for each k in N :
for each i in N :

for each j in N :
d(i , j) := min

{
d(i , j), d(i , k)+d(k, j)

}
Figure 2.7 Pseudocode for the Floyd-Warshall algorithm

computed more efficiently. One of these is the algorithm of Floyd (1962), Warshall

(1962) and Roy (1959), shown in Figure 2.7. Johnson’s algorithm is a combination of

the Dijkstra and Bellman-Ford algorithms, using an initial Bellman-Ford run to com-

pute a re-weighted graph that is suitable as input for Dijkstra’s algorithm (Johnson

1977). All of these techniques seem superficially quite similar to one another, and

indeed there is a way of perceiving all shortest-path algorithms as specializations of

a single ‘ur-algorithm’ based on matrix multiplication. That is, each of the named

algorithms we know about can be thought of as carrying out the same calculation,

but in a way that is specialized for some particular class of shortest-path problems

where certain optimizations apply that cannot be made in the general case.

The modern synthesis of shortest-path algorithms treats the underlying problem

in terms of linear algebra. Recall that every graph can be represented by its adjacency

matrix. The operation of finding the shortest path can be carried out by applying a

2. ALGEBRAIC ROUTING 29

certain matrix iteration based on the adjacency matrix of the graph:

σ : X 7→ I t (A ·X)

where A is the adjacency matrix and I is the identity matrix. It can be shown that

σk (I)i j contains the length of the shortest path between i and j among all paths of

length at most k. Because we are limited to simple paths, the matrix σ|N |(I) must

contain the shortest paths among all paths of any length. We have

σk (I) = I t At A2 t·· ·t Ak−1 t Ak

and

σ|N | = A∗ = ⊔
h≥0

Ah .

Here, the matrix addition and multiplication operations were defined in terms of

underlying operations on natural numbers—addition, and binary minimization. We

can replace these by other operations, and also change the type of matrix elements,

to obtain a new algorithm that operates according to the same principle, but with a

different notion of ‘best path’. This will be discussed further in the next section.

2.3.1 Genericized algorithms

The replacement of (N,min,+) by a semiring in the solution of fixed-point matrix

equations was first done by Carré (1971). Previously-known algorithms for solving

path problems could then be reinterpreted in terms of linear algebra: the Bellman

algorithm is Jacobi elimination; the Ford-Fulkerson algorithm is Gauss-Seidel elim-

ination; and the Floyd-Warshall algorithm is Jordan elimination. This connection

suggested that better algorithms for the shortest path problem could be developed

based on known techniques for solving matrix equations; for example, Rote (1985)

discovered a systolic algorithm based on observations about the flow of computa-

tion in Gauss-Jordan elimination.

Whereas Carré considered only idempotent semirings, Lehmann (1977) was able

to drop this requirement and therefore make available a wider variety of instances

of the path problem. In particular, the problem of counting the number of paths

between each origin-destination pair can be solved by using the semiring (N,+,×),

which is not idempotent, in the familiar matrix algorithm, if all arcs are given weight

1. Other counting problems admit solutions by means of related non-idempotent

semirings.

2. ALGEBRAIC ROUTING 30

In a similar way, the standard single-path algorithms can be extended in vari-

ous ways to deliver multiple paths. These may or may not be of equivalent cost.

An example of the latter is the problem of finding the list of the best k paths for

each source-destination pair, for some fixed k. Extensions to the algebraic system to

deal with multiple paths have been attempted by Wongseelashote (1979) and Mohri

(2002), among others, although there is no general theory of these problems other

than the standard semiring approach.

Accounts of these generic matrix-based algorithms have been given by Carré

(1979), Rote (1990), and Gondran and Minoux (1984, 2001), among others. A detailed

history of research on this topic appears in Chapter 8 of Zimmermann (1981), cover-

ing especially the period from 1950 to 1980.

The precise list of algebraic properties demanded from the semiring structure

is not standard in the literature. Indeed, there is an alternative development of the

algebraic theory that uses ordered semigroups instead: some care is needed to un-

tangle exactly which axioms are needed for which algorithmic applications. Note

that for the purpose of running an algorithm, such as the matrix iteration method,

it is only necessary for operators of the appropriate types to be present; but in order

to ensure that the computation will terminate with the desired result, the algebraic

structure needs to satisfy certain additional properties.

This fact only becomes a problem once we start trying to construct algebraic sys-

tems that have more complicated behaviour, and whose properties are consequently

more difficult to verify. It is therefore important to make certain of which properties

are required and for what reason. If we can prove that some property is not needed

after all, then we not only save ourselves the effort of verifying that condition, but

we also make it possible to use a wider variety of concrete algebras with confidence.

More subtly, we know that a structure that satisfies all of the semiring axioms ex-

cept distributivity can still be used in the iteration algorithm (since we still have two

binary operations over the same set), but computes a different kind of result: rather

than obtaining the best paths between each pair of nodes, it finds a stable solution

among path assignments.

This can be explained as a Nash equilibium: a state from which no player can

improve by deviation. In this context, the players are the nodes, each of which has

their own preferences among possible paths. They are only allowed to choose routes

which are consistent with the choices made by their neighbours. An assignment of

paths to nodes is stable when no node can choose a better path from the candidates

made available as a result of the other nodes’ choices.

2. ALGEBRAIC ROUTING 31

A further wrinkle with the distributivity property is that it seems to be ‘fragile’,

meaning that it may not be preserved by several of the semiring-based constructions

we would like to carry out. Given the importance of this property in determining the

kind of solution which the iterative algorithm produces, it is essential to provide a

complete account of how this and other properties are related to algebraic construc-

tions.

The property of distributivity for a semiring is related to several other properties

for other structures. In a semiring (S,⊕,⊗), distributivity is the requirement that

c ⊗ (a ⊕b) = (c ⊗a)⊕ (c ⊗b)

for all a, b and c. This is clearly similar to the criterion for a function f over (S,⊕) to

be a homomorphism,

f (a ⊕b) = f (a)⊕ f (b),

for all a and b. Indeed, this homomorphism property is the exact analogue of dis-

tributivity when dealing with monoid endomorphisms (Gondran and Minoux 2001)

or with semigroup transforms (Definition 2.36).

In order theory, there is the property of an order semigroup (S,¹,⊗) that

a ¹ b =⇒ c ⊗a ¹ c ⊗b

for all a, b and c. This property will be referred to as monotonicity; it has previously

also been called isotonicity (Griffin and Sobrinho 2005; Sobrinho 2005). This is of in-

terest because there are several constructions relating monotonic order semigroups

to distributive semirings (see for example Theorem 3.6). It has also been related to

algorithmic convergence in its own right, in the case of linear orders (Cormen, Leiser-

son and Rivest 1990).

The name ‘monotonicity’ has alternatively been applied to the property

∀a, c : a ¹ c ⊗a

or its strict variant

∀a, c : a ≺ c ⊗a.

The latter property will be called increasing and the former nondecreasing. These

are related to the existence of local optima, or Nash equilibria, even in the absence

of distributivity. This connection is explored in Chapter 4.

For symmetry between the order and semigroup cases, the distributivity prop-

erty will sometimes be referred to as monotonicity, to allow the same name to be

used in proofs and arguments which relate to both structures.

2. ALGEBRAIC ROUTING 32

2.3.2 Influence of the Internet

The development of computer networks provided a further impetus to the study and

use of generic best-path algorithms. The design of the ARPANET routing algorithm

was directly inspired by the work of Carré, and various semiring structures were con-

sidered for modelling the notion of ‘best path’ in this context (McQuillan 1974; Mc-

Quillan, Richer and Rosen 1980). It was not at all clear how the various attributes

of a network path—such as end-to-end delay, bandwidth, reliability, and router pro-

cessing speed—could be summarized so as to make it clear when one path is better

than another, and consequently many possible designs had to be explored. This was

effectively abandoned in the eventual protocol, which had a single numeric metric

for ‘cost’; it was up to the individual network operator to set this value appropriately

based on whatever attributes he or she considered important. In addition, most

work on shortest path algorithms had concentrated on methods that could be run

on a single computer, and where the graph was unchanging during the program’s

run; in a routing context, however, there are compelling reasons to have the com-

putation be distributed rather than centralized, and able to adapt dynamically to

changing network conditions.

There are three general mechanisms by which routing protocols compute their

routes.

1. Link state. Participants in the protocol exchange information about all arcs

in the network and their attributes; consequently, each participant is able to

build the same internal map of the network. Conventional shortest-path al-

gorithms can be run against this map, and the paths obtained by each parti-

cipant will be consistent since they are working with the same information.

2. Distance vector. In this model, participants send and receive information

about destinations and their associated least-cost reachability estimates. In

contrast to the link-state model, no information about network topology is

(explicitly) propagated. Instead, each participant maintains a vector of the cur-

rent estimated cost for reaching each destination. Updates from neighbours

may result in this estimate being updated, and the new vector can then be

transmitted onwards.

3. Path vector. The path vector model is essentially the same as the distance

vector model, the difference being the information that is associated with each

destination: in path vectoring, it is a route through the network, as opposed to

2. ALGEBRAIC ROUTING 33

the weight of the route. Maintaining an explicit path is a way to avoid loops,

because prospective extensions to the path can be checked to ensure that a

loop is not created—this is not possible if only the cost of the path is available.

In practice, it may not be possible to assign a particular protocol’s mode of operation

to just one of these categories.

The growth of computer networks made issues of scalability more acute. Conver-

gence time for distributed shortest path protocols can be exponential in the num-

ber of nodes in the network. The nascent Internet was not only larger, but more

diverse than before: a single definition of ‘best path’ could no longer be enough to

satisfy the conflicting demands of different network operators. The concept of a ‘net-

work of networks’, made up of several participants each with their own systems and

local administrative control, was a natural fit for a new routing technology, the split

between exterior and interior routing. The original Exterior Gateway Protocol (EGP)

operated by assuming that participant networks had their own distinctive routing

protocols, and were joined together in a tree: EGP would manage the connections

between these autonomous systems, while within each network a separate protocol

would connect border routers and local systems, without any knowledge of how the

outside world was structured (Rosen 1982).

EGP was only ever intended as a stopgap until a new and better protocol could

be developed for connecting the Internet’s autonomous systems. The first version

of the Border Gateway Protocol (BGP) was adopted as a standard in 1990, follow-

ing previous experimental deployment (Lougheed and Rekhter 1989, 1990); the ver-

sion currently ubiquitous for the Internet is BGP-4 (Rekhter and Li 1995). There have

been many other alterations and extensions to BGP and related routing technology

since 1995; some of these have been included in an updated version of the BGP-4

standard (Rekhter, Li and Hares 2006).

BGP is notable for the degree of flexibility it permits in network configuration,

even disregarding the existence of some extensions which have been standardized.

Router vendors may also offer their own modified versions of the protocol.

BGP is an example of a path vector protocol, but unlike previous algorithms and

protocols, it does not solve the shortest path problem. Instead, it finds solutions

to the stable paths problem, a related but distinct combinatorial problem. This is

discussed in detail in Chapter 4.

2. ALGEBRAIC ROUTING 34

Aside from BGP, the surviving routing protocols in the present Internet are:

1. Routing Information Protocol (RIP). This is a distance vector protocol using

a simple numeric ‘cost’ metric. The first version of the protocol was stand-

ardized in RFC 1058 (Hedrick 1988), and a second version in RFC 2453 (Malkin

1998). There is also a ‘next generation’ RIP for IPv6 defined in RFC 2080 (Malkin

and Minnear 1997).

2. Open Shortest Path First (OSPF). This is a hybrid protocol: OSPF divides the

network into areas connected by a backbone; within each area, pathfinding

uses a link-state mechanism, but the exchange of routing information along

the backbone uses a distance-vector method. The original protocol was de-

scribed in RFC 1131 (Moy 1989), and by Coltun (1989). A second version was

standardized as RFC 2328 (Moy 1998b), and a third version, for IPv6, as RFC

5340 (Lindem et al. 2008). The most comprehensive description of OSPF is in

the two books by Moy (1998a, 2000).

3. Intermediate System to Intermediate System (IS-IS). This is a link-state pro-

tocol. IS-IS was initially developed as an OSI standard, and was published as

ISO/IEC 10589 in 1992; a draft of this document appeared as RFC 1142 (Oran

1990). This was later updated as RFC 1195 (Callon 1990) for use in TCP/IP net-

works; the ISO/IEC document has received several corrections and was most

recently updated in 2002.

4. Enhanced Interior Gateway Routing Protocol (EIGRP). EIGRP is the incom-

patible replacement for the (non-Enhanced) IGRP, both of which are Cisco-

proprietary rather than open standards. They both use the same metric for

route comparison, but otherwise operate differently. EIGRP uses the DUAL al-

gorithm to establish best routes while avoiding transient loops (Garcia-Luna-

Aceves 1993). It is described in Cisco Systems White Paper 16406.

There is a considerable engineering effort associated with ensuring that these

distributed protocols operate properly, even aside from the details of the best-path

computation being performed (Bertsekas and Gallager 1992). Another important

consideration is that the route computation should be consistent with the network’s

forwarding regime. Internet forwarding is hop-by-hop: the sender of data does not

control the entire route, but can only pass it on to some neighbour indicated by

the routing computation. Consequently, the design of an Internet routing protocol

2. ALGEBRAIC ROUTING 35

should make sure that the computed routes do indeed correspond to the path that

would be taken by forwarded data (Feamster and Balakrishnan 2005).

This is related to the problems in routing theory of understanding what kinds

of best-path computation are possible, what their performance characteristics are,

and whether successful termination can be guaranteed. It is possible to reason about

these in the abstract, just as is done with shortest-path problems, orthogonally to the

distributed computation issue. For example, Griffin, Shepherd and Wilfong (2002)

define both the stable paths problem as a mathematical object, and a simple path-

vector protocol which can solve (certain) stable paths problems in a distributed or

centralized fashion. Along the same lines, Sobrinho (2005) considers an asynchron-

ous message-passing algorithm for solving a path problem given in algebraic terms.

2.4 Metalanguages

The previous section introduced the split between algebra and algorithm in the solu-

tion of path problems. Various kinds of path problems can be presented, with the

nature of a solution being couched in terms of the algebra of path weights. Several

methods are available for computing such solutions, but in order for these to apply

it may be necessary to ensure that the algebra has some additional properties.

The promise of metarouting is to provide a rigorous means of defining the al-

gebras which underlie path problems, so that their correctness properties can be

automatically inferred (Griffin and Sobrinho 2005). This is associated with the goal

of providing genericized routing algorithms, which can be instantiated with any al-

gebra having the appropriate properties. Such a system would greatly simplify the

engineering task of implementing a new routing protocol.

The defining characteristic of the metarouting approach, in contrast to previous

work and in support of the implementation requirement, is the use of a metalan-

guage to define algebras. The metalanguage provides structure on which both the-

ory and implementation can rely. Each expression in the metalanguage serves to

define an algebra. There are some ‘base’ algebras built in, together with a collection

of combinators for making new algebras from old. The term ‘algebra’ here refers to

any of the mathematical objects used in the study of path problems (including semir-

ings, ordered semigroups, and so on). Incorporation of several structures allows a

wider range of constructions to be expressed than if only a single kind of algebra

were present. The presence of multiple types of structure does not compromise the

property deduction system, since required properties can be reformulated for each

2. ALGEBRAIC ROUTING 36

case, but it does result in an increase in the number of deduction rules that need to

be proved.

For the theory, use of a metalanguage gives us some structure to the algebras,

and we can exploit this in our proofs. We need to be able to infer whether or not

certain properties hold for a given algebra. This can be done in a compositional way,

thanks to the structure provided by the metalanguage. Each base algebra and each

combinator is associated with rules for property inference. The top-level properties

that we seek can therefore be deduced from the properties of the base algebras in-

volved and the rules for each combinator used. Ideally, this deduction process will

be able to be easily automated; this will certainly be the case if we can find a rule-set

that is complete.

There are at least two problems that might arise here. Firstly, finding the rules

could be very difficult: there is no guarantee of how mathematically easy or hard

this might be in a given case. We hope that the properties under discussion can be

phrased mathematically in a way that will be susceptible to these ‘compositional’

proofs—if they are more or less ‘constructive’ then we probably have a good chance

of being able to find rules. Secondly, we may find that the number of properties we

need to track becomes very large, or perhaps even unbounded. There is no obvious

reason why we should not see rules of the form

P(S �T) ⇐⇒ (Q1(S)∧ R1(T))∨ (Q2(S)∧ R2(T))∨·· ·

for some combinator �, and infinite collections of properties (Qi)i∈N and (R j) j∈N. If

this does turn out to be the case, then an implementation of the property deduction

system will have to do something more sophisticated than simply looking up rules

in fixed tables.

The existence of a metalanguage has significant implications for practical imple-

mentation of a metarouting system. The hierarchical nature of metalanguage ex-

pressions means that we can apply well-known code generation principles to turn

an expression into a corresponding piece of computer code. If the property check-

ing process can be automated, then at the same time our implementation can say

whether or not the generated code is indeed suitable for use in a particular context.

There may be other advantages as well, including in particular the possibility of auto-

matically carrying out certain optimizations, driven by the presence of appropriate

algebraic properties. We will see some examples of this idea later.

Note that by use of a language, we are explicitly not attempting to be able to de-

scribe all possible algebras. That class would include any finite or infinite structure

2. ALGEBRAIC ROUTING 37

with the appropriate operators and axioms; a wide class indeed. But the language,

based on a comparatively small collection of base algebras and combinators, will

probably not be able to express all of these. We hope at least to be able to cover ex-

amples that are of use in Internet routing. As a language design goal, this concept

is somewhat imprecise; the next section will propose more concrete evaluation cri-

teria.

It could be that we in fact can cover every single algebra with our language, if it

is well-chosen. This is not necessarily a design goal, because many algebras seem to

have little relevance for pathfinding. If we can generate anything, then we will cer-

tainly have satisfied our goal of generating everything that is useful—but it is more

likely that we will have to demonstrate this in a more subjective way, by showing a

range of useful examples that are covered.

Previously, Gouda and Schneider (2003) have considered methods for the com-

positional design of routing metrics. They consider two ways of combining algebras

into a metric that supports the finding of shortest paths. In a similar way, Manger

(2006, 2008) deals with lexicographic combinations of path algebras in order to solve

the shortest path problem. This thesis represents an effort towards analysing such

compositions in a more thorough way, by looking at a wider range of algebraic struc-

tures and a larger repertoire of properties. In addition, the property deduction rules

which are sought are two-way; that is, they are ‘if and only if’ theorems which com-

pletely characterize when a given property holds for a composite algebra.

2.4.1 Properties within the algebraic system

A property of a class of algebras is a logical statement that may or may not hold for

particular algebras in that class. We will speak of properties of semigroups, semir-

ings, ordered sets, and the like. If a property P holds of an algebra S, we will write

‘P(S)’. We will write properties using the standard symbols of first-order logic with

equality:

∀ ∃ ¬ ∧ ∨ =⇒ ⇐⇒ =

together with symbols appropriate for the algebra:

S ⊕ ⊗ ¹ F

So if we say that

M =∀a, b, c ∈ S : c ⊗ (a ⊕b) = (c ⊗a)⊕ (c ⊗b)

2. ALGEBRAIC ROUTING 38

S The underlying set of the algebra.
⊕ The ‘additive’ binary operator.
⊗ The ‘multiplicative’ binary operator.
¹ The preorder on S.

≺ The strict version of (≺): x ≺ y
def⇐⇒ x ¹ y ∧¬(y ¹ x).

∼ The equivalence relation x ∼ y
def⇐⇒ x ¹ y ∧ y ¹ x.

The incomparability relation x # y
def⇐⇒ ¬(x ¹ y ∨ y ¹ x).

F The function set, a subset of S −→ S.

Figure 2.8 Symbols used in algebraic properties.

> The topmost element of a preorder.
⊥ The bottommost element of a preorder.
α⊕ The identity for ⊕.
α⊗ The identity for ⊗.
ω⊕ The annihilator for ⊕.
ω⊗ The annihilator for ⊗.

Figure 2.9 Symbols for special elements of algebras.

is a semiring property, we mean that it is satisfied by a semiring (T,�,�) if and only

if

∀a, b, c ∈ T : c � (a � b) = (c � a)� (c � b)

is true; and then we would write ‘M((T,�,�))’ or ‘M(T)’.

The generic algebraic symbols have the interpretations listed in Figure 2.8. Not

all of these will be present in every algebra: the properties are implicitly ‘typed’ and

apply only when the symbols involved are appropriate for the algebra in question.

There are some properties which apply in a more-or-less equivalent form for dif-

ferent algebras (for example, cancellativity can be formulated in terms of a binary

operator ⊗ or a function set F , but is essentially the same property). In these cases,

the same name will sometimes be used, but explicit definitions will always be given

for each kind of algebra where the property applies.

The symbols for special elements listed in Figure 2.9 will sometimes be used in

properties. These will only ever appear in subexpressions like ‘∃>’ or ‘x =>’; these

will be taken to be false if there is no unique topmost element, so the property can

still be well-defined. We can read these as shorthands for ‘∃t : ∀u : (u ≺ t ∨u = t)’

and ‘∀u : (u ≺ x ∨ u = x)’ respectively, where t and u are variables not previously

used, and likewise for subexpressions involving the other special elements.

39

Chapter 3

Minimal sets of paths

In considering route selection, it is often the case that in a particular path problem,

there will be multiple paths of equivalent weight for some source-destination pair.

Our algorithms tend to be presented in a way which assumes that only a single path

is possible, or at least that if there are multiple paths, only a single one will be re-

turned. This chapter is about the finding of multiple paths, using algebras of ‘min-

imal sets’. Such constructions are based on operations like

min(A) = {
x ∈ A

∣∣∀y ∈ A : ¬(y ≺ x)
}

where A ⊆ (S,¹) (3.1)

which reduce a given set to a nub of minimal elements. In particular, if we are given

an order transform (S,≤,F) then we can construct the minimal set algebra minset(S)

as (M(S),⊕,FM) where

1. M(S) is {A ⊆ S | A = min(A)},

2. A⊕B is min(A∪B), and

3. FM is
{

fm
∣∣ f ∈ F

}
and fm(A)

def= min
{

f (a)
∣∣ a ∈ A

}
.

Properties of this algebra are investigated below, and in particular it will be demon-

strated that (⊕) is associative.

Use of minset is preferable to any other way of resolving the multiple path is-

sue. Other alternatives are to use a single-path algorithm with one of the following

strategies:

1. Prefer older paths (so if a node is already using p and is presented with a path

q of equivalent weight, then p will remain).

2. Prefer newer paths.

3. Linearize the order and run as normal.

3. MINIMAL SETS OF PATHS 40

The first two of these depend on the dynamics of the running algorithm or protocol.

In the case of a synchronous algorithm, further tiebreaking (perhaps on node iden-

tifiers) must be introduced. The third option encompasses all means of extending a

given order to be linear.

It will now be shown that none of these is viable for general use. This is because

there are some algebras which have the correct properties for finding of global op-

tima, but for which these strategies yield non-optimal results. It is not argued that

these do not work in any circumstances, but only that there are some situations in

which they fail.

Let U be the order semigroup

(℘ {a, b, c} ,⊇,∪).

This is clearly monotonic: if A is a superset of B then A∪C is a superset of B ∪C .

Consider a graph where node 1 has two paths to the origin, with weights {a} and

{b, c}, and where there is an arc from node 1 to node 2 labelled with {a, b}. Note that

{a} and {b, c} are incomparable in U . Dynamically, node 1 might see either of its two

possible paths first.

1. In strategy 1, if {b, c} arrives first at 1 then it will be kept, and node 2 will in turn

adopt {a, b, c}. But if {a} arrives first then 2 can only get {a, b}, which is worse

than {a, b, c}.

2. In strategy 2, if {a} arrives first then 2 will get {a, b}, but this will soon be re-

placed by {a, b, c} once 1 has received {b, c}. But if {b, c} is the first to be received

at 1, then 2 will get {a, b, c} only to see it replaced by {a, b}.

So in both cases, it is possible for node 2 to end up with a non-optimal path, despite

the algebraic properties of U .

Linearization of an order seems to offer a way out, since for U it is possible to

find an extension of (⊇) which is linear and monotonic. But in general, there are

algebras which are monotonic but have no monotonic linearization. This means

that strategy 3 does not justify the use of a single-path algorithm, because there may

not be any way of forcing a linear order in a way that preserves monotonicity and

hence existence of global optima.

3. MINIMAL SETS OF PATHS 41

Proof. We will give an example of a monotonic algebra that has no monotonic lin-

earization. Let

S = (N,≤, {s =λx . x +1}) (3.2)

T = ({0,1} ,=, {i =λx . x, n =λx . (x +1) mod 2}). (3.3)

Consider the order transform

(S ×T,¹, {(s, i), (s, n)})

where

(w, x) ¹ (y, z) ⇐⇒ w < y ∨ (w = y ∧x = z)

and

(s, i)(w, x) = (s(w), i (x)) = (w +1, x)

(s, n)(w, x) = (s(w), n(x)) = (w +1,(x +1) mod 2).

This is an example of a lexicographic product; such products will be discussed in

Chapter 5.

It can be verified that this order transform is monotonic. But there is no linear

order (≤L) which maintains monotonicity. Consider a pair of elements (k,0) and

(k,1) in S ~×T . If (k,0) ≤L (k,1) then by monotonicity we have

(s, i)(k,0) = (k +1,0) ≤L (k +1,1) = (s, i)(k,1) (3.4)

(s, n)(k,0) = (k +1,1) ≤L (k +1,0) = (s, n)(k,1) (3.5)

The same conclusion is reached if (k,1) ≤L (k,0). Hence (≤L) is not a linear order.

The failure of these strategies should make use of the minset operator more at-

tractive, provided that it does have the right algebraic properties. So we now need to

understand how to define algebras that make use of min, and how these behave in

terms of the properties we need for correctness. The remainder of this section exhib-

its some definitions related to the min operation; the next section shows its algebraic

properties.

The formulation in 3.1 assumes an underlying preorder, but it is also possible to

make a similar definition over a commutative idempotent semigroup (a semilattice)

in terms of its natural order. If (S,⊕) is a semilattice, define

min(A) = {
x ∈ A

∣∣∀y ∈ A : y = y ⊕x =⇒ x = x ⊕ y
}

(3.6)

3. MINIMAL SETS OF PATHS 42

for A ⊆ S. This works because in the (left) natural order based on ⊕,

¬(y < x) ⇐⇒ ¬(y = y ⊕x ∧¬(x = x ⊕ y))

⇐⇒ ¬(y = y ⊕x)∨ (x = x ⊕ y)

⇐⇒ (y = y ⊕x =⇒ x = x ⊕ y).

It is clear that the two definitions of ‘min’ (Equations 3.1 and 3.6) are equivalent,

in the sense that the preorder definition over the natural order of a semilattice is

identical to the semilattice definition.

In the following discussion, take (S,¹) to be a fixed preorder. It is clear that min

is a function from ℘S to ℘S. The following equations hold for all subsets A and B of

S:

min(A) = min(min(A)) (3.7)

min(A∪B) = min(min(A)∪B) (3.8)

min(A) ⊆ A. (3.9)

Note also that min(;) =;, and min({s}) = {s} for any singleton subset {s} of S. Within

a set min(A), every pair of elements is either equivalent or incomparable.

If we are presented with two sets A and B of alternative routes, an obvious thing

to do is to construct the set min(A∪B), consisting of the best routes from either set.

This gives us the (⊕) operator of minset(S) defined above. From Equation 3.8 we

know that this (⊕) is associative, for

(A⊕B)⊕C = min(min(A∪B)∪C)

= min(A∪B ∪C)

= min(A∪min(B ∪C))

= A⊕ (B ⊕C)

for all subsets A, B and C of a preorder. It is similarly easy to see that (⊕) is commut-

ative.

It would be possible to define minset(S) so that the underlying set was ℘S as

opposed to {A ⊆ S | A = min(A)}. If we use the whole of℘S, then (⊕) is not necessarily

idempotent: whenever A and min(A) are different, we have

A⊕ A = min(A∪ A) = min(A) 6= A.

However, (⊕) is idempotent for our definition of minset(S), since it is only ever ap-

plied to minimal sets. Equation 3.7 ensures that (M(S),⊕) is closed, because

min(A⊕B) = min(min(A∪B)) = min(A∪B) = A⊕B

3. MINIMAL SETS OF PATHS 43

These facts demonstrate that (M(S),⊕) is a semilattice.

A natural order can be derived for (⊕). This is given by

A ≤ B ⇐⇒ A = A⊕B = min(A∪B)

⇐⇒ min(A) = min(A∪B) since A = min(A)

⇐⇒ ∀b ∈ B : ∃a ∈ A : {a} = min{a, b} .

This relates to the interpretation of min as yielding the ‘non-dominated’ elements of

the given set, in the language of economic utility.

If (S,¹) is a preorder then define a new relation (¹nd) on S by

x ¹nd y
def⇐⇒ ¬(y ≺ x). (3.10)

This says that x is ‘not dominated by’ y if and only if y is not preferred to x. Then by

definition, min(A) is {
x ∈ A

∣∣∣∀y ∈ A : x ¹nd y
}

.

In particular, an element x of S is in min
{

x, y
}

if and only if x ¹nd y . The natural

order of minset(S) appears as

A = min(A∪B) ⇐⇒ ∀x ∈ A, y ∈ A∪B : x ¹nd y.

for all sets A and B. It is easy to see that ¹nd is reflexive. It is also linear, since

(x ¹nd y)∨ (y ¹nd x)

⇐⇒¬(y ≺ x)∨¬(x ≺ y)

⇐⇒¬((y ≺ x)∧ (x ≺ y)).

Similarly, if S is a linear order, then (¹nd) is antisymmetric, and in this case x ¹nd

y ⇐⇒ ¬(x ¹ y). But in general, (¹nd) is not transitive: for example, if z ≺ x, and y is

incomparable to both x and z, then

x ¹nd y and y ¹nd z but ¬(x ¹nd z).

Because (S,¹nd) is not a preorder, it is not appropriate for direct use in our algebraic

framework. The encapsulation of (¹nd) into the min operation allows this kind of

preference to be treated equally with existing algebra and algorithms.

3. MINIMAL SETS OF PATHS 44

A B

C

α β

γ δ

ε ζ (0,d)

(0,b) (0,c)

(0, a)

(1,d)

(1,b) (1,c)

(1, a)

(2,d)

Figure 3.1 Three partial orders—from left to right, these are P , Q and R.

3.1 The distributive lattice connection

This section will show how the min operation is related to Birkhoff’s representation

theorem, and how this relationship manifests in terms of algebraic routing.

We will illustrate the various order-theoretic constructions by means of three run-

ning examples of partial orders. These are shown in Figure 3.1: P , Q and R. The order

R is a lexicographic product ofNwith the four-element ‘diamond’ order.

The principal upper set generated by an element x of a partial order (S,≤) is

↑x = {
y ∈ S

∣∣ y ≤ x
}

,

as in Definition 2.28. Suppose that S satisfies the descending chain condition (Defin-

ition 2.18). If this is so, then min(A) is nonempty for every subset A of S. Note

that we do not require that this set be finite, as in a well-quasiordering, and so S

may contain an infinite antichain (see Kruskal (1972) for the related theory of well-

quasiorderings).

Lemma 3.1. If S is an order satisfying the descending chain condition, then

↑min(A) = ↑A

min(↑A) = min(A)

for all subsets A of S.

3. MINIMAL SETS OF PATHS 45

Proof. For the first equality, it is clear that ↑min(A) is a subset of ↑A, by definition

of the principal filter on a set. But if y is in A \ min(A) then there must be some

element x of min(A) such that y < x. It follows that ↑ y is a subset of ↑x. Therefore

↑ (A \ min(A)) is a subset of ↑min(A), which completes the first part of the proof.

The second equality holds if

min(A) = min(A∪ (↑A) \ A).

This is true since everything in ↑A that is not in A must be strictly greater than at least

one element of A. There is therefore no element of (↑A) \ A which is in min(A).

Consequently,

↑A = ↑B ⇐⇒ min(A) = min(B). (3.11)

since if ↑A = ↑B then min(↑A) = min(↑B) and so A = B, and symmetrically for the

reverse direction.

This provides an isomorphism between upper sets and minimal sets; we can

choose to represent an upper set A as the set min(A) of its minimal elements. This is

not only more compact, but provides our useful min operation with a link to import-

ant areas of order theory. We can even do union and intersection operations using

this form. We know that for all sets A and B,

min(A∪B) = min(min(A)∪min(B)).

It follows that when the upper sets A and B are being represented as min(A) and

min(B), the representation of their union A∪B will be min(min(A)∪min(B)). In other

words, the ‘min-union’ operation (which we have identified as being of operational

importance in routing) corresponds to a standard operation on upper sets.

Recall the definition of meet-prime elements of a lattice (Definition 2.25). In the

lattice of minimal sets, the meet-prime elements are those minimal sets C for which

C = min(A∪B) =⇒ C = A∨C = B (3.12)

for any minimal sets A and B. These are precisely those minimal sets which are

singletons. If we perceive this lattice as the lattice of upper sets, the meet-prime

elements are the principal upper sets (those generated by a single element of the

original order).

Proof. If C = {c} is a singleton and {c} = min(A∪B), then every element of A∪B must

be greater than or equal to c, and c itself must be in A∪B. But A and B are themselves

3. MINIMAL SETS OF PATHS 46

minimal sets, so if c ∈ A then A = {c} and likewise for B. So at least one of A and B is

equal to C . This shows that {c} is meet-prime, for each c.

Now, suppose that C is meet-prime. Since C is a minimal set, all of the elements

of C are equivalent or incomparable; and any subset of C is itself minimal. Let A and

B be disjoint subsets of C . Then C = A∪B = min(A∪B), so by assumption, C = A or

C = B. This means that the only way to split C is as C ∪;, which means that C must

be a singleton.

The upper sets in our three partial order examples are as follows:

1. For P , they are ;, {A}, {B}, {A,B} and {A,B,C }.

2. For Q, there are fourteen of them:

• first, we have the empty set;

• next, the upper sets generated by each single element:

α 7→ {α} β 7→ {
β
}

γ 7→ {
α,γ

}
δ 7→ {

β,δ
}

ε 7→ {
α,β,γ,ε

}
ζ 7→ {

α,β,δ,ζ
}

• finally, we can take unions of these principal upper sets to find seven

more upper sets:

{
α,β

}
,
{
α,β,δ

}
,
{
α,β,γ

}
,
{
α,β,γ,δ

}
,
{
α,β,γ,δ,ε

}
,
{
α,β,γ,δ,ζ

}
,Q

3. For R, we can follow much the same procedure. The principal upper set gener-

ated by each element is:

(k, a) 7→ {(k, a)}∪U

(k, b) 7→ {(k, a), (k, b)}∪U

(k, c) 7→ {(k, a), (k, c)}∪U

(k, d) 7→ {(k, a), (k, b), (k, c), (k, d)}∪U

where U = {(r, x) | k < r}. Taking unions, the only new upper sets we find are

those generated by a pair {(k, b), (k, c)}. So we see that there is a correspond-

ence between the upper sets of R and those of the diamond order (namely {a},

{a, b}, {a, c}, {a, b, c} and {a, b, c, d}).

3. MINIMAL SETS OF PATHS 47

;

{A} {B}

{A,B}

{A,B ,C }

;

{α} {β}

{α,γ} {α,β} {β,δ}

{α,β,γ} {α,β,δ}

{α,β,γ,ε} {α,β,γ,δ} {α,β,δ,ζ}

{α,β,γ,δ,ε} {α,β,γ,δ,ζ}

{α,β,γ,δ,ε,ζ}

Figure 3.2 The lattices corresponding to the partial orders P and Q of Figure 3.1.
Elements in grey are those which are not minimal in their sets.

These facts are consequences of the well-known representation theorem of Birk-

hoff (1937) which relates distributive lattices to partial orders:

Theorem 3.2. A finite distributive lattice is isomorphic to the lattice of upper sets of

the partial order of its meet-prime elements.

This has been extended by to non-finite structures by means of Stone duality, but

the correspondence between ‘min’ and upper sets only holds in the well-founded

case. The more restrictive case here is equivalent to Theorem 10 in Chapter 9 of

Birkhoff (1948).

The theorem reveals the minset operator as transforming a partial order into a

distributive lattice. In particular, the fact that minset(S) is a distributive lattice, with

the join operation being (⊕), can be seen as generating greatest lower bounds where

they did not exist before. Even if two elements of S do not have a greatest lower

bound (such as α and β in Q) the corresponding singleton sets in minset(S) have a

greatest lower bound (in Q, this is
{
α,β

}
). Figure 3.2 shows the lattices corresponding

to the partial orders P and Q.

3. MINIMAL SETS OF PATHS 48

Figure 3.3 A reduction on a semigroup

This is a satisfying result for partial orders. In the case of a preorder, the minimal

set algebra can still be constructed: the relationship with distributive lattices still

holds, but is no longer an isomorphism.

Definition 3.1. For a preorder (S,¹), define the equivalence-free partial order (¹po)

on S by

s ¹po t
def⇐⇒ s = t ∨ (s ¹ t ∧¬(t ¹ s)) .

This order is the same as the original, but with all equivalent elements now made

incomparable. It is straightforward to prove that this is always a partial order; and if

(¹) was already a partial order, then (¹) = (¹po).

Theorem 3.3. If (S,¹) is a preorder, then its upper sets are the same as those of (S,¹po).

Proof. A subset A of S is an upper set with respect to the partial order (¹po) if and

only if

(x ∈ A∧ (x = y ∨x ≺ y)) =⇒ y ∈ A;

that is,

((x ∈ A∧x = y) =⇒ y ∈ A)∧ ((x ∈ A∧x ≺ y) =⇒ y ∈ A).

The first implication is obviously true, and the second is the same as the condition

for A to be an upper set with respect to the preorder (¹).

It follows that minset(S,¹) is the same as minset(S,¹po), and is therefore a dis-

tributive lattice. This gives a many-to-one relationship between preorders and dis-

tributive lattices: there are several preorders which yield the same lattice, and each

lattice is the image of many preorders. However, there is still exactly one partial order

which is associated with each distributive lattice.

3.2 Reductions and congruences

An approach to generalizing operations like min is the path algebra formulation of

Wongseelashote (1976, 1979). Based on the equations (3.7) and (3.8), we can define

3. MINIMAL SETS OF PATHS 49

a reduction on any commutative semigroup (X ,⊕) to be a function r : X −→ X satis-

fying

r ◦ r = r (3.13)

r(a ⊕b) = r(r(a)⊕b). (3.14)

Note that for monoids, (3.13) is redundant since we can just set b to be the identity in

(3.14). Figure 3.3 shows the graph of a reduction, demonstrating that each element

is a fixed point or one application away from a fixed point.

So min is a reduction on (℘S,∪). There are other examples for the k-best paths

problem and for multisets. In general, reductions seem to be operators that put their

argument into some canonical form.

The definition above bears some resemblance to the Kuratowski axioms for the

closure operator of a topological space, or for its dual, the interior operator (see for

example Kelley (1955)). These definitions are, however, not equivalent: the interior

operator must satisfy

int(A∪B) = int(A)∪ int(B)

so it is a reduction, but not every reduction obeys this axiom. In particular, min does

not. In the order

a

b

c

d

we have

min{a, d} = {a, d}

min{b, c} = {b, c}

but min({a, d}∪ {b, c}) = {a, c} 6= {a, b, c, d}

and so min is not an interior operator.

Reductions do not seem to admit much of a structure theory in themselves, and

it has proved difficult to characterize the space of all reductions. However, we can

show that there is a relationship between reductions and congruences (see Defini-

tion 2.20). For each reduction there is a congruence, and for each congruence there

is at least one reduction. This observation means that there is a reasonable algebraic

way of characterizing these functions, which will allow us to discover more about

them. Figure 3.4 shows how the reduction of Figure 3.3 yields a congruence.

3. MINIMAL SETS OF PATHS 50

Figure 3.4 A congruence (derived from the reduction of Figure 3.3)

Lemma 3.4. For any reduction r, define a relation (∼r) on X by

a ∼r b
def⇐⇒ r(a) = r(b).

This (∼r) is a congruence.

Proof. First we check that (∼r) is an equivalence relation.

• Reflexivity: r(a) = r(a) for all a, so a ∼r a always.

• Symmetry: a ∼r b =⇒ r(a) = r(b) =⇒ b ∼r a.

• Transitivity: If a ∼r b and b ∼r c then r(a) = r(b) and r(b) = r(c), so r(a) = r(c)

and a ∼r c.

To prove that it is a congruence, suppose that a ∼r b, so that r(a) = r(b). Then

r(a ⊕ c) = r(r(a)⊕ c) by (3.14)

= r(r(b)⊕ c) since r(a) = r(b)

= r(b ⊕ c) by (3.14).

Hence (∼r) is indeed a congruence.

We can also produce a reduction from a congruence. In fact, there will typic-

ally be many choices of reduction for a different congruence. The congruence (∼)

splits X into equivalence classes, and this collection of classes is also a commutative

monoid, referred to by the notation X /∼. There is a homomorphism ρ\ called the

natural map, taking each element of X to its ∼-equivalence class. If we choose a

function going in the other direction, taking each equivalence class to some repres-

entative element within the class, then the composition of these two functions will

be a reduction. The choice of representatives means that there may be multiple re-

duction functions, although they all correspond to the same congruence and define

the same equivalence classes. This is demonstrated in Figure 3.5, which shows a

mapping from congruence classes to chosen representatives of each class. Note that

these are different from the fixed points of the reduction of Figure 3.3.

3. MINIMAL SETS OF PATHS 51

Figure 3.5 A possible choice for θ : X /∼−→ X

Lemma 3.5. Let (X ,⊕) be a semigroup, ∼ a congruence, and ρ\ the natural map. If

θ : X /∼−→ X is such that ρ\ ◦θ= id, then θ◦ρ\ is a reduction; and ∼ is equal to ∼θ◦ρ\ .

Proof. Note that the condition ρ\ ◦ θ = id simply expresses that the representative

for a class should be an element of that class. There is always at least one such θ,

because there can be no empty classes. This condition also provides that θ must be

one-to-one, for if θ(P) and θ(Q) then (ρ\ ◦θ)(P) and (ρ\ ◦θ)(Q) must also be equal;

and then P =Q.

Now, θ◦ρ\ satisfies the axioms for a reduction. For (3.13),

(θ◦ρ\)2 = θ◦ (ρ\ ◦θ)◦ρ\ = θ◦ρ\.

For (3.14),

(θ◦ρ\)(a ⊕b) = θ(ρ\(a)⊕ρ\(b)) since ρ\ is a homomorphism

= θ(ρ\(θ(ρ\(a)))⊕ρ\(b)) since ρ\ ◦θ= id

= (θ◦ρ\)((θ◦ρ\)(a)⊕b) since ρ\ is a homomorphism.

Furthermore, the congruence derived from this reduction is ∼ again:

a ∼θ◦ρ\ b ⇐⇒ θ(ρ\(a)) = θ(ρ\(b))

⇐⇒ ρ\(a) = ρ\(b) since θ is one-to-one

⇐⇒ a ∼ b by definition of the natural map.

Hence for any congruence there is at least one equivalent reduction.

We can therefore choose to represent any reduction r as a pair (∼,θ), since this

is enough to completely determine the function. In the case of min, the relevant

congruence is the same as that for upper sets:

A ∼min B ⇐⇒ min(A) = min(B) ⇐⇒ ↑A = ↑B.

This implies that a ∼min-class consists of sets all of which have the same principal

upper set. One choice for θ would be to take

θ(P) = ⋃
A∈P

A

3. MINIMAL SETS OF PATHS 52

so that θ(P) = ↑ (A) for any A in P . This choice has a mathematical advantage in that

this θ is a homomorphism with respect to set union:

θ(P ∪Q) = ⋃
A∈P∪Q

A

=
(⋃

A∈P
A

)
∪

(⋃
B∈Q

B

)
= θ(P)∪θ(Q).

However, this is not the only choice. We can recover min from (∼min) by choosing

θ′(P) = ⋂
A∈P

A = min(θ(P))

This demonstrates that although reductions are not homomorphisms, they are re-

lated, and that the idea of a congruence is the unifying concept.

Other examples treated by Wongseelashote (1979) can be handled similarly.

1. Consider the set Σ∗ of words over an alphabet Σ. The function s on subsets of

Σ∗ given by

s(A)
def= {

a ∈ A
∣∣ no letter appears more than once in a

}
is a reduction on (℘Σ∗,∪). This defines a congruence (∼s) given by

A ∼s B
def⇐⇒ A \ΣR = B \ΣR

where ΣR is the set of words over Σ that contain a repeated letter. Note that

unlike min, this s is a homomorphism. An equivalent definition of (∼s) would

be

A ∼s B ⇐⇒ A∪ΣR = B ∪ΣR .

In either case,

θ(P) =
(⋃

A∈P
A

)
\ΣR

is a function that yields the original s.

2. Let (¹) be the order on Σ∗ given by

x ¹ y
def⇐⇒ the letters of x appear in order in y .

For example, ‘cod’ ¹ ‘command’ and ‘rise’ ¹ ‘armistice’. The ‘elem’ reduction

of Wongseelashote is just the min function over this order.

3. MINIMAL SETS OF PATHS 53

3. Multisets over a set X are equivalent to functions from X toN∞. Multiset union

is given by

A∪B
def= λx . A(x)+B(x).

One reduction with respect to this operation is

r(A)
def= λx .

1 if A(x) ≥ 1

0 otherwise.

This effectively reduces a multiset to an ordinary set: each element appears at

most once. The reduction can be perceived as the combination of a congru-

ence and a function. The congruence makes two multisets equivalent if they

are the same when multiplicity is disregarded:

A ∼ B ⇐⇒ (∀x ∈ X : A(x) = 0 ⇐⇒ B(x) = 0)

and the selection function chooses the appropriate element of the equivalence

class:

θ(P) =λx . min
A∈P

A(x).

This θ exhibits the familiar pattern that the representative of an equivalence

class is often some kind of ‘summary’ of the entire class, and is not an arbitrary

choice.

The interpretation of reductions in terms of congruences is helpful because it

clarifies the true role of a reduction as well as often being more algebraically use-

ful. A reduction is not an arbitrary transformation that fulfils some unusual axioms,

but instead arises as the combination of a congruence—to say which distinctions

between elements are being ignored—and a choice of representative element from

each equivalence class.

So far, this chapter has made little mention of the mapping of functions over

minimal sets. The definition of minset(S) as an order transform includes a set of

functions, each of which operates by

fm(A) = min
{

f (a)
∣∣ a ∈ A

}
where f is a function on the original S. The original definition of a reduction over a

semiring (S,⊕,⊗) includes the axiom

∀A,B : r(A⊗B) = r(r(A)⊗B) = r(A⊗ r(B))

3. MINIMAL SETS OF PATHS 54

where

A⊗B
def= {a ⊗b | a ∈ A, b ∈ B} ;

see Wongseelashote (1976, 1979). In terms of functions rather than an (⊗) operator,

the axiom would become

∀A, f : r(f (A)) = r(f (r(A))) (3.15)

or ∀ f : r ◦ f = r ◦ f ◦ r in point-free style. This property can be used to show that

monotonicity of S implies distributivity of minset(S). In the case of min, it is guar-

anteed that A = min(A), and hence (min◦ f)(A) and (min◦ f)(min(A)) are equal as

well.

Theorem 3.6. Suppose that (S,¹,F) is monotonic. Then minset(S) = (M(S),⊕,FM) is

distributive.

Proof. Let fm be a function from FM , and let A and B be elements of M(S). It must

be shown that

fm(A⊕B) = fm(A)⊕ fm(B),

which by definition is equivalent to

(min◦ f)(min(A∪B)) = min
(
min(f (A))∪min(f (B))

)
.

By (3.8), we have

min
(
min(f (A))∪min(f (B))

)= min
(

f (A)∪ f (B)
)

= min(f (A∪B)),

so in order to prove distributivity, it is enough to show that

∀ f : min◦ f ◦min = min◦ f .

This is (3.15), which has just been shown to hold for minset(S).

The results of Chapter 4 will provide us with the information we need for the

‘increasing’ property in relation to minimal sets: if S is increasing, then algorithms

over minset(S) converge to local optima.

55

Chapter 4

Convergence for non-distributive

algebras

The property of distributivity or monotonicity for an algebra is sufficient to allow

standard path-finding algorithms to reach a globally optimal path assignment. For

algebras which fail to be distributive, certain results are known, but the full situation

remains unclear. We know that for an algebra which is selective (a linear order) and

increasing, the same standard algorithms will find a Nash equilibrium, or locally op-

timal path assignment. In the absence of selectivity, no theorem is presently avail-

able.

In this chapter, we will examine two convergence proofs for selective and increas-

ing algebras, and explore the links between them. A new proof will then be presen-

ted which covers not only this case, but also a case related to multipath routing. This

short proof also shows that the fixed point which is found by the standard algorithm

is unique.

4.1 Two convergence proofs

The convergence of the standard matrix iterationσ : X 7→ AX ⊕I has been thoroughly

explored in the case where the matrix elements are drawn from a semiring. But even

if not all semiring axioms hold, convergence is still possible. An important case is

that if a bisemigroup (S,⊕,⊗) satisfies

1. (⊕) is commutative, idempotent and selective;

2. an identity for (⊕) exists and is an annihilator for (⊗);

3. for all x and y , x = x ⊕ (y ⊗x) 6= y ⊗x

4. CONVERGENCE FOR NON-DISTRIBUTIVE ALGEBRAS 56

and is used to label a graph, then the σ iteration always converges to a fixed point.

(It is also required that paths with loops be forbidden.) This third property is called

the ‘increasing’ property, since it expresses the fact that any extension y⊗x of a path

x must be strictly worse than x. Notably, the distributive property is not required.

For these ‘increasing bisemigroups’, the fixed point that is found is generally not

a globally optimal path assignment. In the semiring case, it can be shown that the

result of the iteration is a matrix whose (i , j) entry corresponds to the optimal path

from node i to node j ; that is, the sum
⊕

p∈P p where P is the set of all paths from i

to j . But in the absence of distributivity, the result of the iteration is instead a local

optimum or Nash equilibrium. Let σ∗(X) be the fixed point of σ starting from X as

the initial matrix. Then

σ∗(X)i j =
⊕
k∈N

Ai k ⊗σ∗(X)k j ⊕ Ii j . (4.1)

This equation expresses that fact that the (i , j) entry of σ∗(X) is the best choice out

of the set {
Ii j

}∪{
Ai k ⊗σ∗(X)k j

∣∣ k ∈ N
}

(4.2)

of all extensions of the paths chosen by neighbours of i in σ∗(X). It is therefore a

stable solution to the original path problem: a path assignment in which every node

has the optimal path out of those paths which are consistent with the choices made

by other nodes. In terms of game theory, no node can improve on the path it already

has (given that it must choose an extension of some neighbour’s path) and so this

can be called a Nash equilibrium.

The stable paths problem is a combinatorial path problem formulated in order

to model some aspects of the BGP route selection process (Griffin, Shepherd and

Wilfong 1999, 2002; Griffin and Wilfong 2000). Though not using the same language

of abstract algebra, the original publications show that if the path preferences of

nodes follow the ‘increasing’ rule, then a stable solution exists and can be found

through iteration. Later accounts of the stable paths problem have removed some

of the elaborations present in the original model, such as the dynamics of message

passing and queueing.

An instance of the stable paths problem is a graph G , with one node O identified

as the origin, together with a list ρ(i) of paths from i to O for each node i . This list

is interpreted as providing the relative preferences of paths; not all paths from i to O

will be on the list, and those that are not included are presumed to be forbidden. It

is not specified how these rankings come about: they could be derived algebraically

from a labelling of arcs, but this is not part of the model. A solution to the problem is

4. CONVERGENCE FOR NON-DISTRIBUTIVE ALGEBRAS 57

a path assignment with the property that no node is able to improve on the path it is

assigned. For some instances of the stable paths problem, there are multiple stable

solutions.

The strategy in the original paper is to prove the contrapositive: if there is no

solution, then there must be a dispute wheel somewhere in the graph. This is an

arrangement of nodes whose preferences collectively violate the rule. If these wheels

cannot occur, then there must be a stable solution. In order to prove the absence of

dispute wheels, another construction is used, the dispute digraph. This is a new

graph based on the preference structure of the given stable paths problem. Cycles

in the dispute digraph correspond to dispute wheels, so if the digraph is acyclic then

there cannot be a dispute wheel. Path preferences derived from an algebra with the

increasing rule always define acyclic digraphs; so in this case there are no dispute

wheels in G , which means that at least one stable solution exists.

The dispute digraph is defined as follows. Its nodes are all of the simple paths in

the graph. There are two kinds of arc: transmission arcs and dispute arcs. Whenever

p is a path from j to k, and there is an arc in the original graph from i to j , then there

is a transmission arc in the dispute digraph from p to (i j)p. The dispute arcs relate

to preferences, and violations of the monotonicity rule. Suppose that there are two

paths p and p′ from j to k, and that p is preferred to p′, but the extension (i j)p′ is

preferred to (i j)p. Then a dispute arc exists in the digraph, between p and (i j)p′.
Once this graph has been shown to be acyclic, a proof based on ‘histories’ shows

that the iterative algorithm must terminate. A history is a chain in the dispute di-

graph that is associated with each node. These histories change as the algorithm

progresses, according to a fixed construction rule, and it can be shown that they

never decrease in length. Since the dispute digraph is finite and acyclic, there must

come a point when each history is fixed in size: from the construction rule, it can

then be deduced that the current path assignment is stable, and the algorithm has

terminated.

The rule for building histories is as follows. Whenever a node changes its current

path, its associated history also changes. There are two alternatives: either the new

path is better, or it is worse. Note that in the conventional shortest-path setting, this

second case is impossible: it is the possibility for these kinds of dynamics which

make the nondistributive termination proofs difficult. If the new path is better, this

must be because it has been announced by some neighbour. The new history then

consists of the neighbour’s history, plus the new path; then the new link in the chain

is a transmission arc. If the new path is worse, then it must be that a path which

4. CONVERGENCE FOR NON-DISTRIBUTIVE ALGEBRAS 58

was previously available has now disappeared, because a neighbour has withdrawn

its prefix. In this case, the new history consists of the history of the withdrawing

neighbour, followed by the path which was lost, so that the new link is a dispute

arc. The intention behind this construction is that the history ‘explains’ how a value

came to be adopted at a particular point (Griffin and Wilfong 2000).

An alternative proof style is used by Sobrinho (2003). This is based on a meas-

urement of the network activity, at a given time, associated with each path. There is

a similar construction to the dispute digraph, but based on a slightly different rela-

tion among paths. It is shown that each possible step in the asynchronous protocol

results in a decrease in this activity measurement.

We will show how these two proofs are connected. First, a version of the Sobrinho

proof is produced which is adapted for the the algebraic approach: it will be based on

matrix iteration, rather than on an asynchronous message-passing model. This will

allow a more direct comparison with the dispute digraph structure. It also shows that

it is possible to characterize termination of this algorithm in terms of the familiar

linear algebra structure.

Some generalizations and simplifications can be made at the same time; the ori-

ginal proof required all path weights to be distinct, whereas the new proof allows

there to be two different paths with the same weight. An adaptation is also possible

to the minimal-sets algebra, as a prelude to the ultrametric proof discussed in Sec-

tion 4.2.

In the following, (S,⊕,F) will be taken to be an increasing bisemigroup with (⊕)

being selective. Let G = (N ,E) be a graph weighted over S by w, and let P be the set

of simple paths in G , together with the ‘null path’ φ. We require that w(φ) =α⊕, and

if w(p) =α⊕ then p =φ.

The null path represents the absence of any route. It should not be confused with

an empty path, which is a zero-length path from a node to itself. In our model, there

will be many empty paths, but only one null path.

We will define an order on the set of simple paths. It is important that there

should be no cycles: the foundation of our proof is that for any path with a certain

property, there is another path which precedes it in the order and has a related prop-

erty. If cycles were allowed, then although this statement could still be true, we could

not use that relationship to prove convergence. The order is

p ¹ q ⇐⇒ w(p) = w(p)⊕w(q).

This is a preference relation.

4. CONVERGENCE FOR NON-DISTRIBUTIVE ALGEBRAS 59

Definition 4.1. A path profile is any function from P toN.

This definition is different from that used by Sobrinho. He defined the rank of a

path with respect to the (≤) order, and used functions from the set of ranks to N. In

fact, we do not lose anything if we omit the notion of rank. (The rank is elsewhere

known as the height of an element in the order: the length of the longest path from

that element to the bottom.)

The next step is to establish an order on path profiles. The matrix iteration will

induce a decrease with respect to this order. This is the synchronous analogue of

Sobrinho’s theorem that network activity (the sending and receiving of messages and

updating of local tables) is associated with such a decrease. In that formulation, each

path is associated with a count: the number of nodes which are using the path, plus

the number of messages in transit which mention it. The path profile order is based

on ranks: it is permissible for a count to increase, so long as there is some other

lower-ranked path for which the count decreases.

Definition 4.2. Let (S,≤S) and (T,≤T) be partially ordered sets, with (S,≤S) well-

founded and (T,≤T) linear. Define a relation (v) on the set of functions from S to

T as follows:

f v g ⇐⇒ ∀x ∈ S : f (x) >T g (x) =⇒ (∃y ∈ S : y <S x ∧ f (y) <T g (y)).

Then (S −→ T,v) is the lexicographic power of S and T , denoted S
lex−−→ T .

This ordered set is sometimes known as the ordinal power or ordinal product

in the literature on ordinal arithmetic (Birkhoff 1948; Novák 1965). We use the term

‘lexicographic power’ to emphasize the nature of the order, rather than the role of

the construction in transfinite mathematics.

Lemma 4.1. The (v) relation is a partial order (provided that (S,≤S) is well-founded

and (T,≤T) is linear).

Proof. See Section A.1 in Appendix A.

In the case when S is a linear order, S
lex−−→ T reduces to the set of S-indexed se-

quences of elements of T , ordered lexicographically.

We use this order for the set (P −→N) of path profiles. The least element of (P −→
N) is the function taking each input to 0. Sobrinho’s ranks are natural numbers, plus

infinity for the null path; as such, they form a linear order. We do not have this,

but the definition here is enough for the following proofs. In the linear order case,

4. CONVERGENCE FOR NON-DISTRIBUTIVE ALGEBRAS 60

path profiles are tuples (n1, n2, . . . , n|P |) ∈N|P | with a lexicographic order. The critical

step in the proof is that ‘activity’ of a certain kind at a higher rank is associated with

another kind of ‘activity’ at a lower rank. Even though we do not have a linear order,

this idea still makes sense: rather than speaking of ranks that are higher and lower in

the linear order, we have paths which precede other paths in a partial order.

Definition 4.3. A subset R of (P −→N) is component bounded if there is a path profile

m such that for every r in R, and for every p in P , r(p) ≤ m(p).

The above definition is for upper bounds: lower bounds always exist for each

subset. This definition is distinct from the notion of boundedness with respect to the

(v) order; the ‘component bound’ is that for each path p, the value max
{

r(p)
∣∣ r ∈ R

}
is finite, whereas boundedness for (v) would mean that R had a least upper bound.

Any finite subset of (P −→N) is component bounded. If R1 and R2 are component

bounded then R1 ∪R2 and

R1 +R2
def= {r1 + r2 | r1 ∈ R1, r2 ∈ R2} (4.3)

are also component bounded.

Lemma 4.2. Suppose that P is finite. Let R be a subset of (P −→N). Then R satisfies

the descending chain condition if and only if it is component bounded.

Proof. Suppose that R is component bounded by the path profile m. Then |R| is at

most Πp∈P (m(p)+1), which is a finite number because P is finite. Because R is finite,

it must satisfy the descending chain condition.

Now suppose that R is not component bounded. Then there is at least one path

p for which
{

r(p)
∣∣ r ∈ R

}
is infinite. Let p0 be a minimal such path; so if p ≺ p0, then{

r(p)
∣∣ r ∈ R

}
is finite. There must then be a countable subset R′ of R such that

1.
{

r ′(p0)
∣∣ r ′ ∈ R′} is infinite, and

2. if p ≺ p0, then for all r ′1 and r ′2 in R′, r ′1(p) = r ′2(p).

The set R′ then forms an infinite descending chain.

The fact that a descending chain cannot be of infinite length is an important step

in the proof, because it means that a descending chain must eventually stabilize.

We will show that this corresponds to convergence of the pathfinding process. So

without this lemma, there would be the possibility that our algorithm gets closer

and closer to its goal without ever actually reaching it.

4. CONVERGENCE FOR NON-DISTRIBUTIVE ALGEBRAS 61

Let A be the adjacency matrix of G , and define σ to be the function

σ(X) = I ⊕ (A ·X). (4.4)

We will define a function V to associate each matrix X with a path profile. To show

that the sequence

X ,σ(X),σ2(X),σ3(X), . . .

converges for all X , we need to prove some facts about V :

1. the range of V contains no infinite descending chain;

2. V (σ(X)) v V (X) for all X ; and

3. V (X) = V (σ(X)) implies X =σ(X) for all X .

These facts together ensure that the sequence

V (X),V (σ(X)),V (σ2(X)),V (σ3(X)), . . .

is monotonically descending, but is not of infinite length, and so we will eventu-

ally reach an index k for which V (σk (X)) = V (σk+1(X)), and then we obtain σk (X) =
σk+1(X).

Now, the domain of a path profile is the set of simple paths in a graph, whereas

the traditional matrix iteration approach is for each matrix to contain the weights

of paths rather than the paths themselves. For the purposes of this proof, we do

need to distinguish different paths which have the same weight; this does not affect

the termination properties of the iteration, but is required in particular in the proof

of Lemma 4.4 below. There are several ways in which path information could be

encoded or otherwise made available, accompanying the weight data in the matrix

or alongside it. In the development below, we will assume that this has been done,

either by augmentation of the algebra S or by using some companion data structure

for each matrix. We will therefore write ‘p = Xi j ’ and mean that p is the (unique)

path associated with the matrix entry Xi j .

Define the function V from SN×N to (P −→N) by

V (X)(p) = ∣∣{(i , j)
∣∣ p =σ(X)i j

}∣∣+ ∣∣{(i , j)
∣∣ p =σ(X)i j 6= Xi j

}∣∣ . (4.5)

Note that V (X)(p) is either 0, 1 or 2 for all X and p. Therefore V (X) is component

bounded, by the function m(p)
def= 2. Note that the set P is finite, so Lemma 4.2 ap-

plies, and hence the range of V satisfies the descending chain condition.

4. CONVERGENCE FOR NON-DISTRIBUTIVE ALGEBRAS 62

Lemma 4.3. Let δ be the function from SN×N ×P to Z given by

δ(X)(p) = V (σ(X))(p)−V (X)(p).

Then for all X , and all nodes i and j :

1. δ(X)(σ(X)i j) ≤ 0.

2. If δ(X)(σ(X)i j) = 0 then Xi j =σ(X)i j =σ2(X)i j .

3. If δ(X)(p) > 0 for some path p from i to j , then p =σ2(X)i j 6=σ(X)i j .

Proof. It can be verified from the definition of δ that

δ(X)(σ(X)i j) =


0 if Xi j =σ(X)i j =σ2(X)i j

−1 if Xi j 6=σ(X)i j or σ(X)i j 6=σ2(X)i j

−2 if Xi j 6=σ(X)i j and σ(X)i j 6=σ2(X)i j

δ(X)(σ2(X)i j) =


2 if σ(X)i j 6=σ2(X)i j

0 if σ(X)i j =σ2(X)i j and Xi j 6=σ(X)i j

−1 if σ(X)i j =σ2(X)i j and Xi j =σ(X)i j

and δ(X)(p) = 0 if p is a path from i to j that is equal to neither σ(X)i j nor σ2(X)i j .

Lemma 4.4. If δ(X)(p) > 0 for some path p from i to j , then there is a node k and a

path q from k to j such that q ≺ p and δ(X)(q) < 0.

Proof. If δ(X)(p) > 0 then p =σ2(X)i j , andσ(X)i j is not equal to p, by Lemma 4.3(3).

Since (¹) is a linear order, and σ(X)i j and σ2(X)i j are different, they must be

strictly ordered: either σ(X)i j ≺σ2(X)i j or σ(X)i j Âσ2(X)i j .

If σ(X)i j ≺σ2(X)i j then let k be i and let q be σ(X)i j . By Lemma 4.3(1) it follows

that δ(X)(q) ≤ 0. But it cannot be that δ(X)(q) = 0, since then, by Lemma 4.3(2), we

would have σ(X)i j =σ2(X)i j . Therefore δ(X)(q) < 0 as required.

Alternatively, σ(X)i j Â σ2(X)i j . The nodes i and j must be different, since oth-

erwise σ(X)i j and σ2(X)i j would both be equal to Ii i . Hence σ2(X)i j is not the null

path; there is some node k for which σ2(X)i j = Ai k ⊗σ(X)k j . Let q be σ(X)k j . Be-

cause (¹) is increasing, we have q ≺ p:

q =σ(X)k j ≺ Ai k ⊗σ(X)k j =σ2(X)i j = p.

4. CONVERGENCE FOR NON-DISTRIBUTIVE ALGEBRAS 63

By Lemma 4.3(1), we have δ(X)(q) ≤ 0. If δ(X)(q) = 0 then Xk j and σ(X)k j are equal,

by Lemma 4.3(2), and

Ai k ⊗Xk j = Ai k ⊗σ(X)k j =σ2(X)i j ≺σ(X)i j ¹ Ai k ⊗Xk j .

This is a contradiction. Therefore δ(X)(q) < 0 as required.

Theorem 4.5. For all X , V (σ(X)) v V (X).

Proof. Suppose that for some p, V (σ(X))(p) > V (X)(p). Then δ(X)(p) > 0, and by

Lemma 4.4, there is a q ≺ p such that δ(X)(q) < 0; that is, V (X)(q) < V (σ(X))(q).

Hence V (σ(X)) v V (X).

Finally, we show that when the descending chain of path profiles is stable (which

must eventually happen), then the corresponding matrices must also be stable, giv-

ing us a fixed point of σ.

Theorem 4.6. For all X , if V (X) = V (σ(X)) then X =σ(X).

Proof. If V (X) = V (σ(X)) then V (X)(p) = V (σ(X))(p) for all p; so δ(X)(σ(X)i j) = 0 for

all i and j . By Lemma 4.3, we then have Xi j =σ(X)i j for all i and j , so X =σ(X).

4.1.1 Minimal sets

Suppose that S is an algebra of minimal sets over S′, where S′ is increasing. Define V

as:

V (X)(p) = ∣∣{(i , j)
∣∣ p ∈σ(X)i j

}∣∣+ ∣∣{(i , j)
∣∣ p ∈σ(X)i j ∧p 6∈ Xi j

}∣∣ .

Then, as before, we have the following:

1. If p ∈σ(X)i j then δ(X)(p) ≤ 0.

2. If p ∈σ(X)i j and δ(X)(p) = 0 then p ∈ Xi j and p ∈σ2(X)i j .

3. If δ(X)(p) > 0 for a path p from i to j , then p ∈σ2(X)i j but p 6∈σ(X)i j .

These are just the same as in Lemma 4.3, but with ‘=’ replaced by ‘∈’. We can now

prove a new version of Lemma 4.4 for this definition.

Lemma 4.7. If δ(X)(p) > 0 for some path p from i to j , then there is a node k and a

path q from k to j such that q ≺ p and δ(X)(q) < 0.

4. CONVERGENCE FOR NON-DISTRIBUTIVE ALGEBRAS 64

A

B

C D

(10,1)

(30,1)

(10,1)

(10,1)

Figure 4.1 Labelled graph for Example 4.1.

Proof. If δ(X)(p) > 0 then p ∈σ2(X)i j , and p 6∈σ(X)i j .

We have p = (i k)q for some q in σ(X)k j ; and since S′ is increasing, we know that

q ≺ p. Certainly δ(X)(q) ≤ 0. We also know that if δ(X)(q) = 0 then q ∈ Xk j ; so if

q 6∈ Xk j then δ(X)(q) < 0 as desired.

So suppose instead that q ∈ Xk j . Since p = (i j)q 6∈σ(X)i j , there must be some p′

in σ(X)i j with p′ ≺ p. In this case, we will show that δ(X)(p′) < 0. As before, we have

δ(X)(p′) ≤ 0. If δ(X)(p′) = 0 then p′ ∈ σ2(X)i j ; but p′ ≺ p and p ∈ σ2(X)i j . Therefore

δ(X)(p′) 6= 0.

Theorem 4.8. For all X , if V (X) = V (σ(X)) then σ(X) =σ2(X).

Proof. If V (X) = V (σ(X)) then V (X)(p) = V (σ(X))(p) for all p, so δ(X)(p) = 0 for all p.

Therefore, for all p, we have either

1. p ∈ Xi j and p ∈σ(X)i j and p ∈σ2(X)i j ; or

2. p 6∈σ(X)i j and p 6∈σ2(X)i j .

Hence σ(X)i j =σ2(X)i j for each i and j ; and σ(X) =σ2(X).

4.1.2 Examples

Example 4.1. This example uses a lexicographic product; see Definition 5.1 for an

explanation of the ‘~×’ symbol. It implements path choice based on the ‘bandwidth-

distance’ pattern: each path has an associated minimum bandwidth and total dis-

tance, and when choosing paths the bandwidth attribute is the most significant, with

distance being used as a tiebreaker betweek routes of equal bandwidth.

Let S be (N∪{∞} ,max,min)~×(N∪{∞} ,min,+), and let G be the S-labelled graph

in Figure 4.1. Then the path weights are pairs (b, d), where b is the minimum band-

width along the path, and d is the total distance.

4. CONVERGENCE FOR NON-DISTRIBUTIVE ALGEBRAS 65

φ

DC B A

C B A DC A

B A

C A

A

(0,∞)

(10,3)

(10,2)

(10,1)

(30,1)

(∞,0)

Figure 4.2 The path preference structure for Example 4.1, with associated S
weights.

We will show the progress of the algorithm, and associated proof steps, for paths

to the node A. The ordered set P of paths is shown in Figure 4.2. We begin with

the matrix X0 with all entries equal to the null path φ, whose weight is (0,∞). The

paths computed from each node to A, at each stage of the computation, are shown

in Figure 4.3(a); we have σk (X0) = σ4(X0) for every k ≥ 4. Since this algebra is not

monotonic, we have an example here of a node (D) whose path quality decreases:

first it receives the path DC A, but it is then forced to use the less-preferred path

DC BA instead.

Now, in our convergence proof, we use the V function to map these matrices

into a domain of functions, and show that the chain of functions is monotonically

decreasing. The values assigned by V to each path in P , at each stage of the com-

putation are shown in Figure 4.3(b). For a fixed p, the sequence of values seen for

p follows a fixed pattern. First, the value is 0, indicating that this path is not being

used. When the path is first seen, its value changes to 2; thereafter, it drops to 1 for

as long as the path is still present. At the final stage, all paths have value either 0 or 1,

since we have reached a stable state.

To show that the sequence
(
V (σk (X))

)
k≥0 is decreasing, we use the δ function.

The desired pattern is that whenever we see δ(X)(p) being positive, there should

be a path q, which is preferred to p, for which δ(X)(q) is negative. Because of the

lexicographic ordering of functions, this is enough to ensure that V (σ(X))(p) is less

than V (X)(p). The values of δ are shown in Figure 4.3(c) In the proof of Lemma 4.4,

there are two ways of finding a q for a given p: either q is a prefix of p which has just

been made available by a neighbour, or q is a path from the same node as p which

4. CONVERGENCE FOR NON-DISTRIBUTIVE ALGEBRAS 66

A B C D

X0 φ φ φ φ

σ(X0) A φ φ φ

σ2(X0) A B A C A φ

σ3(X0) A B A C BA DC A
σ4(X0) A B A C BA DC BA

(a) Paths obtained to A

A C A B A C B A DC A DC B A φ

V (X0) 2 0 0 0 0 0 3
V (σ(X0)) 1 2 2 0 0 0 1

V (σ2(X0)) 1 0 1 2 2 0 0
V (σ3(X0)) 1 0 1 1 0 2 0
V (σ4(X0)) 1 0 1 1 0 1 0

(b) The V functions

A C A B A C B A DC A DC B A φ

δ(X0) −1 2 2 0 0 0 −2
δ(σ(X0)) 0 −2 −1 2 2 0 −1
δ(σ2(X0)) 0 0 0 −1 −2 2 0
δ(σ3(X0)) 0 0 0 0 0 −1 0
δ(σ4(X0)) 0 0 0 0 0 0 0

(c) The δ functions

δ(X0)(B A) > 0 δ(X0)(A) < 0 path extension
δ(X0)(C A) > 0 δ(X0)(A) < 0 path extension

δ(σ(X0))(C B A) > 0 δ(σ(X0))(B A) < 0 path extension
δ(σ(X0))(DC A) > 0 δ(σ(X0))(C A) < 0 path extension

δ(σ2(X0))(DC BA) > 0 δ(σ2(X0))(DC A) < 0 lost a preferred path

(d) Proving that the V sequence decreases

Figure 4.3 Matrices and auxiliary functions for Example 4.1.

4. CONVERGENCE FOR NON-DISTRIBUTIVE ALGEBRAS 67

has just been lost. Both relationships are present in this example; see Figure 4.3(d).

In the final case, it would also have sufficed to observe that δ(σ2(X0))(C B A) < 0. But

in general this would not be enough: the decrease at C B A occurs because this was

a new path at the previous step, a fact which is unrelated to its being adopted as an

alternative to DC A.

The sequences of paths, and associated changes in V , are associated with the

convergence proof that is based on ‘histories’. Applications of Lemma 4.4 corres-

pond to successive applications of the history construction rule. In the case of this

example, the applications of the lemma are shown in Figure 4.3(d), with accompa-

nying reasons for why the path has changed in each instance. The corresponding

histories are, for σ4(X0):

A : A

B : B A −→ A

C : C B A −→ B A −→ A

D : DC BA −→d DC A −→C A −→ A

where all arrows indicate transmission arcs, except for the arrow labelled d, which is

a dispute arc. According to the history construction, node D has DC BA at the start of

its history after losing the path DC A, and these are connected with a dispute arc. The

path DC A came about because it was transmitted from node C which had C A, and

this happened because C received the direct path to A. The histories for the other

nodes arise in a similar way, and for each step in each history, the lemma provides a

net decrease in the δ values.

In general, if pk · · ·p2p1p0 is a history, then

δ(σik (X0))(pk) > 0 δ(σik (X0))(pk−1) < 0

δ(σik−1 (X0))(pk−1) > 0 δ(σik−1 (X0))(pk−2) < 0

...
...

δ(σi1 (X0))(p1) > 0 δ(σi1 (X0))(p0) < 0

for some increasing sequence {i1, i2, . . . , ik }. This provides the required link between

this proof and that of Griffin and Wilfong (2000).

Example 4.2. Let (S,≤,⊗) be as follows:

• S consists of pairs (d, o) of a length d in N and an orientation o in {h, v}, to-

gether with the special elements > and ⊥.

4. CONVERGENCE FOR NON-DISTRIBUTIVE ALGEBRAS 68

A B

C D E

Figure 4.4 Labelled graph for Example 4.2. The horizontal arcs have weight (1, h)
and the vertical arcs have weight (1, v).

φ

EDB A

EDC A

DB A DC A

B A C A

A

>

5

4

3

2

1

Figure 4.5 The path preference structure for Example 4.2, with associated costs (ori-
entations omitted).

• (d1, o1) ≤ (d2, o2) if and only if d1 ≤ d2; also, > is greater than all other elements

and ⊥ is less than all other elements.

• (d1, o1)⊗ (d2, o2) is (d1 +d2 +p, o1), where p is 1 if o1 and o2 are different, and 0

if they are the same.

See Lengauer and Theune (1991) for a discussion of a similar algebra. The applic-

ation is to define the cost of a path on a grid to be its length plus a penalty based

on the number of corners. This has uses in the layout of integrated circuits. We will

work with the algebra of minimal sets over S. Note that S is not monotonic, and is

not a linear order, but it is increasing.

A labelled graph G is shown in Figure 4.4, and the corresponding path preference

structure in Figure 4.5. As before, we consider paths from the single source A. The

paths obtained are shown in Figure 4.6(a), and the V andδ functions in Figures 4.6(b)

and 4.6(c) respectively.

4. CONVERGENCE FOR NON-DISTRIBUTIVE ALGEBRAS 69

A B C D E

X0 ; ; ; ; ;
σ(X0) {A} ; ; ; ;
σ2(X0) {A} {B A} {C A} ; ;
σ3(X0) {A} {B A} {C A} {DBA,DC A} ;
σ4(X0) {A} {B A} {C A} {DBA,DC A} {EDC A}

(a) Paths obtained to A

A BA C A DB A DC A EDC A EDB A φ

V (X0) 2 0 0 0 0 0 0 4
V (σ(X0)) 1 2 2 0 0 0 0 2

V (σ2(X0)) 1 1 1 2 2 0 0 1
V (σ3(X0)) 1 1 1 1 1 2 0 0
V (σ4(X0)) 1 1 1 1 1 1 0 0

(b) The V functions

A BA C A DB A DC A EDC A EDB A φ

δ(X0) −1 2 2 0 0 0 0 −2
δ(σ(X0)) 0 −1 −1 2 2 0 0 −1
δ(σ2(X0)) 0 0 0 −1 −1 2 0 −1
δ(σ3(X0)) 0 0 0 0 0 −1 0 0

(c) The δ functions

Figure 4.6 Matrices and auxiliary functions for Example 4.2.

4.2 Ultrametrics and a new proof

We now present a new proof of convergence for nondistributive and increasing al-

gebras. It is inspired by the proof of Sobrinho discussed above, though the mech-

anics are different. This proof is shorter than the previous two, and incorporates a

proof of uniqueness of the fixed point. It covers the minimal-set case as well as the

selective case.

The idea is to define a measurement of the distance between two matrices, and to

show that application of σ to two matrices reduces the distance between them. This

is analogous to the fixed point theorem of Banach (1922), but based on a different

kind of metric space. Furthermore, the finiteness of our problem means that much

of the apparatus of the fixed point theorem is unnecessary.

4. CONVERGENCE FOR NON-DISTRIBUTIVE ALGEBRAS 70

First, recall that the height of an element x of a partial order (S,≤) is the length of

the longest chain in the lower set of x. In particular, the height of a minimal element

is 1. It is easy to see that if x < y then h(x) < h(y), since all elements that are below x

are also below y .

Now, not all of our orders (S,≤) will be finite, and some may not even be count-

able. It is nonetheless possible to define height on a finite subset of S defined by the

weights of every simple path in a graph. Let W be the set
{

w(p)
∣∣ p ∈Ps(G)

}
; then W

is a finite subset of S. A height function can be defined on W alone, and it will then

be a partial function on S; we still have h(x) < h(y) if x and y are elements of W with

x < y . In the following, h can be assumed to be a partial function that by construc-

tion will only be applied to values in its domain, namely the weights of paths in the

graph over which A and σ are defined.

Let H be the extremal value

H = max{h(w)+1 | w ∈ W } . (4.6)

Then the quantity H −h(w) ranges between 1 and H −1, for w in W . Clearly, if x < y

then H −h(x) > H −h(y).

Assume that in the matrix iteration, each matrix entry is a set of paths, and that

within each set, all path weights are equivalent or incomparable. We are therefore

working with an algebra of minimal sets over some other algebra. This situation

includes the selective case, since then each minimal set is a singleton (or empty).

Let S be the underlying algebra; this will be assumed to be increasing, though it is

not necessarily selective or monotonic.

We now define

d(X ,Y)
def= max

{
H −h(z)

∣∣ ∃i , j : (z ∈ Xi j ∧ z 6∈ Yi j)∨ (z 6∈ Xi j ∧ z ∈ Yi j)
}

. (4.7)

By convention, if X and Y are equal, we take max(;) = 0. The following propositions

are easily seen to be true for all X , Y and Z :

1. d(X ,Y) ≥ 0;

2. d(X ,Y) = 0 if and only if X = Y ;

3. d(X ,Y) = d(Y ,X);

4. d(X ,Z) ≤ max(d(X ,Y), d(Y ,Z)).

4. CONVERGENCE FOR NON-DISTRIBUTIVE ALGEBRAS 71

These facts make d into an ultrametric. Such structures have been extensively stud-

ied; see for example Kirk (2001). Other names for the same concept include ‘iso-

sceles space’ and ‘non-archimedean metric’. Ultrametric spaces are similar to metric

spaces, but whereas a metric space must satisfy the triangle inequality

d(X ,Z) ≤ d(X ,Y)+d(Y ,Z),

ultrametric spaces must satisfy the fourth axiom above.

Intuitively, d measures the extent to which two matrices X and Y disagree. The

set of paths which is in one matrix but not the other is

D(X ,Y)
def= ⋃

i , j

(
Xi j \ Yi j ∪Yi j \ Xi j

)
.

These paths are ranked based on their S weights; the process is similar to finding the

paths in D(X ,Y) whose S weights are minimal. But instead of taking

d(X ,Y) = min(D(X ,Y)) ,

we define

d(X ,Y) = max{H −h(z) | z ∈ D(X ,Y)} .

This is because we want d to take values in a linearly ordered set. Even if S is not

linearly ordered, the set of all heights of elements of S must be a linear order. The

reason for taking the maximal value of H − h(z) rather than the minimal value of

h(z) is to reverse the sense of the order, because we want d to yield larger values

for matrices which disagree about low-cost paths, smaller values for matrices which

agree about low-cost paths but disagree about high-cost paths, and zero for matrices

which agree on all paths.

The ball of radius r about a point X in an ultrametric space is the set of all points

within a distance r of X : {Y | d(X ,Y) < r}. Note that there is no distinction between

open and closed balls in the context of ultrametric spaces. An ultrametric space

is said to be spherically complete if every chain of balls has nonempty intersection.

This is true for our example, since the space is finite. There is a general theorem that

any strictly contractive mapping on a spherically complete ultrametric space has

a unique fixed point (Prieß-Crampe 1990). Lemma 4.9 shows that our σ is strictly

contractive, and so Theorem 4.10 is a special case of the Prieß-Crampe theorem, ap-

plicable when the range of d is finite. The proof is given here in full to illustrate how

the unique fixed point result works in this case.

4. CONVERGENCE FOR NON-DISTRIBUTIVE ALGEBRAS 72

Lemma 4.9. For all matrices X and Y , if σ(X) 6=σ(Y) then d(σ(X),σ(Y)) < d(X ,Y).

Proof. If σ(X) 6= σ(Y) then d(σ(X),σ(Y)) cannot be 0. So there is a pair (i , j) on

which σ(X) and σ(Y) disagree, and a path p that is in one matrix but not the other,

having minimal height. Without loss of generality, assume that p is inσ(X)i j but not

σ(Y)i j .

There can be no p′ in σ(Y)i j for which w(p′) ≺ w(p). Suppose that we could find

such a p′. Then that p′ could not be in σ(X)i j , because it is a set of equivalent or

incomparable elements and already contains p. Hence both p and p′ are in the dis-

agreement set D(X ,Y). It is also the case that H −h(p′) > H −h(p). This contradicts

the choice of p as an element of minimal height in D(X ,Y). Consequently no such

p′ can exist.

By the definition of σ, there must be a neighbour k of i and a path q in Xk j such

that w(p) = Ai k⊗w(q). Because S is increasing, we then have w(q) < w(p), so h(q) <
h(p) and H −h(p) < H −h(q).

Is q also in Yk j ? This cannot be the case, since σ(Y)i j does not contain p nor any

path that is preferred to p. If the path q had been in Yk j , then σ(Y)i j would have to

include its extension p; but this did not happen. Consequently the path q does not

appear in Yk j .

Hence X and Y disagree at (k, j), because Xk j contains the path q and Yk j does

not. Therefore the value of d(X ,Y) must be at least H −h(q). We have

d(σ(X),σ(Y)) = H −h(p) < H −h(q) ≤ d(X ,Y)

as required.

Theorem 4.10. If S is increasing, then σ has a unique fixed point.

Proof. We first show that if there is a fixed point, then it is unique. By the preceding

lemma, we know that d(X ,Y) > d(σ(X),σ(Y)) unlessσ(X) =σ(Y). So if X =σ(X) and

Y =σ(Y) then X = Y , since otherwise we would have d(X ,Y) > d(X ,Y).

It is also the case that there is at least one fixed point of σ, which we can ob-

tain by repeated iteration. Take X to be any matrix, and consider the sequence{
X ,σ(X),σ2(X), . . .

}
. By Lemma 4.9,

d(X ,σ(X)) > d(σ(X),σ2(X)) > d(σ2(X),σ3(X)) > ·· ·

is a strictly descending chain inN, and it must therefore be of finite length. Therefore

we reach a k for whichσk (X) =σk+1(X), and so thisσk (X) is the required fixed point.

4. CONVERGENCE FOR NON-DISTRIBUTIVE ALGEBRAS 73

This theorem proves that use of minset(S) always leads to a unique fixed point,

provided that S is increasing. In particular, S need not be selective, and in this case

minset(S) will also not be selective.

Another interpretation of the theorem is that is shows that even if an increasing

nondistributive algebra S is not known to converge, then minset(S) will definitely

converge. This is true, but it is important to realize that S and minset(S) may behave

quite differently, and it is not necessarily possible to use one as a substitute for the

other.

Suppose that x and y are incomparable elements of (S,⊕,F). Then their sum

x ⊕ y will be some element of S that is below both x and y in the natural order; fur-

thermore, given this element it is not necessarily possible to recover x and y . But in

minset(S) the sum of {x} and {y} will be {x, y}. While this is also ordered below both

{x} and {y}, in this case the elements x and y can be recovered (though this is not to

say that sets can be uniquely factorized). Now, it might be thought that these sets

can be ‘flattened’ with (⊕), as ⊕
z∈{x,y}

z = x ⊕ y

to recover the same results as if S had been used all along instead of minset(S).

This is not the case, because of the nondistributivity of F over (⊕). In minset(S),

a node might receive {x} and {y} from its two neighbours, compute {x, y}, and pass

on { f (x), f (y)} to another neighbour over an arc labelled with f . The analogous situ-

ation in S is for the node to receive x and y , compute x ⊕ y , and pass on f (x ⊕ y).

But unless f distributes over (⊕), the flattening f (x)⊕ f (y) of { f (x), f (y)} will not be

equal to f (x ⊕ y).

Not every nondistributive algebra arises as minset(S) for some S. The results

of Chapter 3 show that A = minset(S) if and only if A is a distributive lattice. While

there are many distributive lattices, there are even more partial orders and preorders,

and so there remain many algebras for which we have not yet proved a convergence

criterion.

74

Chapter 5

Lexicographic choice

One of our primary means of constructing new algebras will be the use of lexico-

graphic products, which implement lexicographic choice.

Lexicographic choice is a method of making preference decisions based on mul-

tiple criteria. The available criteria are ranked in importance, and evaluated in this

order; the evaluation ends when a criterion has yielded a decisive result. That is, the

less important criteria are used to break ties arising from the more important end

of the ranking. The term ‘lexicographic’ derives from the sorting order of diction-

ary head-words: the first letter is the most significant, then the second, and so on;

so ‘sausage’ is sorted after ‘sauce’ and before ‘saveloy’. In the routing context, the

criteria will usually be different attributes of a route, such as the end-to-end delay

or the bandwidth. Suppose that routes p, q and r have the attributes shown in Fig-

ure 5.1.

There are then six ways in which these attributes might be considered in a lexico-

graphic order. We use the symbol ‘~×’ to denote such combinations, so ‘B ~×D’ refers

to the ordering where bandwidth is the primary criterion, with the delay attribute

being used to break ties if the bandwidth was not decisive. The six combinations

give rise to the orderings for p, q and r shown in Figure 5.2.

Evidently, decisions about the significance to be assigned to different attributes

can completely change the resulting preference order on routes. The question of

which of these six lexicographic products is ‘the best’ cannot be answered definit-

ively, since any of them might be justified in a given scenario; the choice is an engin-

Bandwidth (B) Delay (D) Reliability (R)

p high long high
q low short high
r high short low

Figure 5.1 Three routes, each with three attributes

5. LEXICOGRAPHIC CHOICE 75

Lexicographic product Preference

B ~×D ~×R r < p < q
B ~×R ~×D p < r < q
D ~×B ~×R r < q < p
D ~×R ~×B q < r < p
R ~×B ~×D p < q < r
R ~×D ~×B q < p < r

Figure 5.2 Six lexicographic products and the resulting route preferences

eering decision. From the metarouting point of view, we can provide the mathemat-

ical tools that will help the protocol designer to choose: and so we need to develop

the theory of lexicographic products.

Lexicographic choice is important to us for two reasons. Most obviously, it is a

useful way of combining algebras that is already familiar in Internet routing practice.

But it is also an important test case for the metarouting approach: the operator is

comparatively simple, while not being trivial. This chapter will be a case study in

developing the correct algebraic definition of the product, and its accompanying

property inference rules. This will demonstrate the metalanguage-based approach,

and the rules themselves will also be of interest because of their implications for

routing protocol design.

In general, if multiple criteria are to be taken into account when choosing routes,

then lexicographic choice may be useful. The Border Gateway Protocol uses lexico-

graphic choice for selecting routes, and there are many attributes that are used in the

selection process. The main alternatives are to use only a single criterion, as in RIP,

where a path weight is simply a number, or to combine multiple criteria according

to some formula. This latter choice is the case for EIGRP, which combines delay and

bandwidth values by a function

λd, b . d + k

b

where k is a fixed constant (optionally, other criteria can be incorporated into the

formula as well). The resulting weights are used to select routes, effectively defining

a preference relation on delay-bandwidth pairs. In fact, the EIGRP metric also in-

corporates lexicographic choice: before this formula is applied, a check is made to

ensure that individual attribute values are within certain bounds.

An advantage of the lexicographic method is that it is straightforward to use with

non-numeric metrics, including those which are not linear orders. Decision-making

5. LEXICOGRAPHIC CHOICE 76

can also be more transparent, since it is obvious which component metrics have

been involved in selecting a particular route. Consequently, it is clearer how weights

can be manipulated to achieve a different outcome.

Lexicographic decision-making has been studied in the economics literature for

many decades. Its most important early appearance was in the work of Debreu

(1954), who showed that induced choice is not sufficient to represent all linear or-

ders: his counterexample was that there is no injective order-preserving function

fromR≥0~×R≥0 toR≥0. This demonstrates that the use of a formula does not subsume

lexicographic choice even for linear orders, so lexicographic choice is a worthwhile

method to investigate.

An objection to this choice method is that it does not model how human beings

assess their options in life. We do not usually think of our decision-making criteria as

being part of a fixed hierarchy; some other model of choice may be a better psycho-

logical fit. Is this a problem for the use of lexicographic choice in protocols? Routing

metrics are designed so as to yield results that operators believe to be in some sense

‘reasonable’ for the way that traffic should flow. Lexicographic choice may not be the

only method that is reasonable here, but the evidence from existing protocols sug-

gests that it is an important part of the picture. In particular, we will see in Chapter 6

that lexicographic choice is essential for modelling hierarchical network partitions.

The ranking of criteria makes sense here because each criterion is set at a different

scope, and local configuration changes should have only a local effect.

5.1 Lexicographic product in orders and monoids

In the case of preorders, the lexicographic product is easy to define. Suppose that

we are given two preorders (S,≤S) and (T,≤T). The order which implements lexico-

graphic choice is their lexicographic product (S ×T,≤S~×T), where

(s1, t1) ≤S~×T (s2, t2) ⇐⇒ (s1 <S s2)∨ (s1 ∼S s2 ∧ t1 ≤T t2). (5.1)

Here, s1 ∼S s2 if and only if both s1 ≤S s2 and s2 ≤S s1; and s1 <S s2 if and only if

s1 ≤S s2 but ¬(s2 ≤S s1). So the T component is only used to break ties for S, and this

tiebreaking does not occur if the S elements are incomparable.

This definition can be expressed in terms of relational algebra as

(≤S~×T) = (<S ×∗T)∪ (∼S ×≤T). (5.2)

5. LEXICOGRAPHIC CHOICE 77

A

BC

D

(a) The order S

0

1

(b) The order T

(D,1)

(D,0)

(C ,1)

(C ,0)

(B,1)

(B,0)

(A,1)

(A,0)

(c) The product S ~×T

(1,D)

(1,C) (1,B)

(1, A)

(0,D)

(0,C) (0,B)

(0, A)

(d) The product T ~×S

Figure 5.3 Lexicographic product of two partial orders

We can then derive relational characterizations of the strict version of the order, of

equivalence, and of incomparability:

(<S~×T) = (<S ×∗T)∪ (∼S ×<T) (5.3)

(∼S~×T) = (∼S ×∼T) (5.4)

(#S~×T) = (#S)∪ (∼S × #T). (5.5)

Here, ‘∗T ’ denotes the complete relation on T , so that t1 ∗T t2 for all t1 and t2 in T .

Figure 5.3 demonstrates the lexicographic product when applied to two partial

orders S and T . The resulting set is the same as for the direct product, but the order

on that set is not the direct product order. It can also be seen that the order of the

operands is important: if they were reversed, then a different result would emerge

from the lexicographic product: S ~×T is not the same as T ~×S.

At the beginning of this chapter, we formed triple lexicographic products like

‘B ~×R ~×D’. This notation is ambiguous unless the (~×) operator is associative. In fact,

this is the case.

5. LEXICOGRAPHIC CHOICE 78

Theorem 5.1. The lexicographic product operator on preorders is associative.

Proof. Using the relational characterization, we have, for all preorders (S,≤S), (T,≤T)

and (U ,≤U):

(≤S~×(T ~×U)) = (<S ×∗T ~×U)∪ (∼S ×≤T ~×U)

= (<S ×∗T ×∗U)∪ (∼S ×((<T ×∗U)∪ (∼T ×≤U)))

= (<S ×∗T ×∗U)∪ (∼S ×<T ×∗U)∪ (∼S ×∼T ×≤U)

= (((<S ×∗T)∪ (∼S ×<T))×∗U)∪ (∼S~×T ×≤U)

= (<S~×T ×∗U)∪ (∼S~×T ×≤U)

= (≤(S~×T)~×U).

We would like to define a similar operator for monoids. As a matter of conveni-

ence and mathematical cleanliness, such a definition would permit lexicographic

choice to be expressed purely in terms of monoids, rather than in terms of an inter-

mediate constructed partial order. More importantly, making a monoid definition

in addition to the order definition will make clear some of the relationships between

these two structures.

What does it mean to make a ‘similar definition’? We already know how to turn

a commutative and idempotent monoid into a partial order, and how to turn an

order possessing least upper bounds or greatest lower bounds into a monoid. Our

construction of a monoidal lexicographic product will thus be informed by these

operations.

The monoidal lexicographic product we want is one which gives the same result

as the order lexicographic product when applied to the same arguments. Of course,

the arguments and results here are of different types—orders and monoids—so we

need to make some kind of translation. The natural order seems to be the most

obvious. But note that this only applies to certain monoids: those which are com-

mutative and idempotent. So for this special case, we need

natord ((S,⊕S)~× (T,⊕T)) = natord(S,⊕S)~×natord(T,⊕T) (5.6)

for all monoids (S,⊕S) and (T,⊕T). Here, natord returns the partial order corres-

ponding to the given monoid. The first ‘~×’ is the desired monoidal version, and the

second is the known preorder version.

5. LEXICOGRAPHIC CHOICE 79

Example 5.1. Let S be the semigroup (N,t) and let T be the semigroup (2N,∪). Their

natural orders (≤S) and (≤T) are given by

m ≤S n
def⇐⇒ m = m tn ⇐⇒ m ≤ n

A ≤T B
def⇐⇒ A = A∪B ⇐⇒ A ⊇ B

and their lexicographic product (≤) is

(m, A) ≤ (n,B)
def⇐⇒ m <S n ∨ (m = n ∧ A ≤T B)

⇐⇒ m < n ∨ (m = n ∧ A ⊇ B).

We want to find a binary operator (⊕) for which (m, A) ≤ (n,B) if and only if (m, A) =
(m, A)⊕ (n,B). This will be the monoidal lexicographic product of S and T .

In this example, the operator can be verified to be

(m, A)⊕ (n,B)
def=


(m, A) if m < n

(n,B) if n < m

(m, A∪B) if m = n.

This is the only binary operator which stands in the required relationship with the

natural order.

Let us try to define (S,⊕S)~×(T,⊕T) for general semigroups. The underlying set of

the semigroup will certainly be S ×T ; we need to define a semigroup operation that

will match our understanding of how the lexicographic product ‘ought’ to behave.

We will first assume that S is selective and commutative: so for all s1 and s2 in S,

s1 ⊕S s2 is equal to s1 or s2 (or both), and s1 ⊕S s2 = s2 ⊕S s1. It follows that S has to be

idempotent.

Suppose that s1 and s2 are distinct, and s1 ⊕S s2 = s1: we interpret the semigroup

operation as choice, meaning that s1 is strictly preferable to s2. Since the S com-

ponent of the lexicographic product must dominate the T component, we define

(s1, t1)⊕ (s2, t2) = (s1, t1) in this case. Because the S choice was decisive, the T val-

ues should not be considered. Symmetrically, if s2 = s1 ⊕S s2 6= s1, then the result of

(s1, t1)⊕ (s2, t2) should be (s2, t2).

The final case is that s1 and s2 could coincide. We should then consider the T

component in determining the final choice: (s1, t1)⊕ (s1, t2) = (s1, t1 ⊕T t2). This com-

pletes the definition.

5. LEXICOGRAPHIC CHOICE 80

Definition 5.1. Let (S,⊕S) be a selective, commutative semigroup and T be a semig-

roup. Then S ~×T = (S ×T,⊕) is the lexicographic product of S and T , where

(s1, t1)⊕ (s2, t2) =


(s1, t1) when s1 = s1 ⊕S s2 6= s2

(s2, t2) when s2 = s1 ⊕S s2 6= s1

(s1, t1 ⊕T t2) when s1 = s2.

We can prove that this does indeed define a semigroup, because the ⊕ operation

is associative. Note that it does not have to be selective or commutative, since this is

not required from T .

Theorem 5.2. Let (S,⊕S) be a selective, commutative semigroup and (T,⊕T) be a

semigroup. Then S ~×T is associative.

Proof. Let (s1, t1), (s2, t2) and (s3, t3) be elements of (S ×T,⊕), and let

(sL, tL) = (
(s1, t1)⊕ (s2, t2)

)⊕ (s3, t3)

(sR , tR) = (s1, t1)⊕ (
(s2, t2)⊕ (s3, t3)

)
.

Note that sL and sR will always be equal, since S is associative: sL = sR = s1 ⊕S s2 ⊕S s3.

If S is selective then sL = sR ∈ {s1, s2, s3}; and some of s1, s2 and s3 may coincide. In

each case, we find that tL and tR are the same:

s1 ⊕S s2 ⊕S s3 tL tR

s1 = s2 = s3 (t1 ⊕T t2)⊕T t3 t1 ⊕T (t2 ⊕T t3)

s1 = s2 t1 ⊕T t2 t1 ⊕T t2

s1 = s3 t1 ⊕T t3 t1 ⊕T t3

s2 = s3 t2 ⊕T t3 t2 ⊕T t3

s1 t1 t1

s2 t2 t2

s3 t3 t3

Therefore ⊕ is associative.

This agrees with Example 5.1. Let us consider an example where the second com-

ponent is not idempotent.

5. LEXICOGRAPHIC CHOICE 81

Example 5.2. Let S be as in Example 5.1, and let T be (R≥0,+). Their lexicographic

product is (S ×T,⊕), where

(m, x)⊕ (n, y)
def=


(m, x) if m < n

(n, y) if n < m

(m, x + y) if m = n.

This is associative and commutative, but is not idempotent; nor is it selective. Be-

cause S ~×T is not idempotent, we cannot derive a natural order.

However, some elements are idempotent: since (m, x)⊕(m, x) is equal to (m,2x),

an element (m, x) is idempotent precisely when x is zero, and the set of idempotents

E(S ~×T) is {(m,0) | m ∈N}. This subsemigroup can have a natural order defined over

it, which is isomorphic to the order on S:

(m,0) = (m,0)⊕ (n,0) ⇐⇒ m ≤ n.

We have seen that a lexicographic product operation can be defined over certain

semigroups. If these are semilattices, this product corresponds to the definition of

lexicographic product in terms of order relations.

So far, we have seen a definition of lexicographic products for the case where

the first operand is a selective semilattice, and the second is any semigroup. The

result of this operation will be a semigroup, but it will not necessarily be selective

or idempotent. This restricts our ability to form multiple products. It would also

be desirable to be able to form products where the first operand is not selective: in

order-theoretic terms, when it is not necessarily a linear order, but could be a partial

order or preorder.

If S is not selective, then Definition 5.1 is not enough: we need a case for when

s1 ⊕S s2 is neither s1 nor s2. Which element of T should be chosen in this case? It is

tempting to say that it should be t1 ⊕T t2; however, this would lead to associativity

being violated. Suppose that s1 and s2 are elements of S with s1 ⊕S s2 6∈ {s1, s2}, and

choose elements t and t ′ from T . Then, using the proposed rule, we have

(s1, t)⊕ (
(s2, t)⊕ (s1 ⊕S s2, t ′)

)
=(s1, t)⊕ (s1 ⊕S s2, t ′)

=(s1 ⊕S s2, t ′)

5. LEXICOGRAPHIC CHOICE 82

whereas

(
(s1, t)⊕ (s2, t)

)⊕ (s1 ⊕S s2, t ′)

=(s1 ⊕S s2, t ⊕T t)⊕ (s1, t ′)

=(s1 ⊕S s2, t ⊕T t ⊕T t ′).

Unless T is trivial, t ⊕T t ⊕T t ′ and t ′ will not be the same for every t and t ′ in T .

If T has an identity αT , then we can define

(s1, t1)⊕ (s2, t2) = (s1 ⊕S s2,αT) when s1 ⊕S s2 6∈ {s1, s2}

in addition to the previous cases, and associativity is regained.

Definition 5.2. Let (S,⊕S) be a commutative idempotent semigroup and T be a mon-

oid. Then S ~×T = (S ×T,⊕) is the lexicographic product of S and T , where

(s1, t1)⊕ (s2, t2) =



(s1 ⊕S s2, t1 ⊕T t2) s1 = s1 ⊕S s2 = s2

(s1 ⊕S s2, t1) s1 = s1 ⊕S s2 6= s2

(s1 ⊕S s2, t2) s1 6= s1 ⊕S s2 = s2

(s1 ⊕S s2,αT) otherwise.

The two definitions 5.1 and 5.2 coincide when S is a selective commutative semig-

roup and T is a monoid, and in both cases, the (~×) operator is associative.

There is an overlap between the classes of semigroups and orders: a semilattice

can be perceived as either an ordered set in which any two elements have a unique

greatest lower bound, or as a monoid whose operation is commutative and idem-

potent. The lexicographic product of two semilattices is the same, whether the order-

theoretic or semigroup-theoretic product is used.

5.2 Inference rules

For use in the context of generic pathfinding algorithms, the key algebraic properties

are that a structure be

• distributive or monotonic, for finding global optima; or

• increasing, for finding Nash equilibria.

5. LEXICOGRAPHIC CHOICE 83

We will also need to find inference rules for more basic properties: commutativity,

idempotence, and selectivity. These rules are:

COMM(S ~×T) ⇐⇒ COMM(S)∧COMM(T) (5.7)

IDEM(S ~×T) ⇐⇒ IDEM(S)∧ IDEM(T) (5.8)

SEL(S ~×T) ⇐⇒ SEL(S)∧ SEL(T) (5.9)

These apply when S and T are semigroups; they are the semigroup counterparts of

the statements that the lexicographic product of orders preserves the properties of

reflexivity, antisymmetry, and being a linear order. See Section A.2 in Appendix A for

the proofs of these statements.

5.2.1 Rules for global optima

Our main results for the monotonicity property are based on a theorem by Saitô

(1970). His theorem is for order semigroups, in the special case when the order is lin-

ear. (Recall that an order semigroup is a structure (S,¹,⊗) consisting of a preordered

set and a semigroup operation over that set.) We will extend this to a more general

case, and to a wider variety of structures. In each case, the theorem has substantially

the same structure, but some of the properties needed are different.

The monotonicity property, MONO, is defined for order semigroups as

MONO =∀a, b, c ∈ S : a ¹ b =⇒ (c ⊗a) ¹ (c ⊗b). (5.10)

We will also need to track whether an order semigroup is left-cancellative (Definition

2.6) or left-condensed (Definition 2.9); these properties are

CANC =∀a, b, c ∈ S : c ⊗a = c ⊗b =⇒ a = b (5.11)

COND =∀a, b, c ∈ S : c ⊗a = c ⊗b. (5.12)

Note that these two properties are only for the semigroup part, not the order part, of

the order semigroup.

The cancellative property is true for some important examples of semigroups,

such as (N,+), but it fails to hold for some other equally important examples, includ-

ing (N,t) and (℘A,∪) for a set A.

The property of being condensed is stricter still. It is true for any left zero semig-

roup (where c ⊗ a = c for all a and c) and for any null semigroup (where there is

a fixed element z such that c ⊗ a = z for all a and c), but these are not the only ex-

amples. If f is a function on S for which f = f ◦ f , then let a⊕b
def= f (a); then (S,⊕) is a

5. LEXICOGRAPHIC CHOICE 84

Family Property Definition

Bisemigroups M ∀a, b, c : c ⊗ (a ⊕b) = (c ⊗a)⊕ (c ⊗b)
C ∀a, b, c : c ⊗a = c ⊗b =⇒ a = b
K ∀a, b, c : c ⊗a = c ⊗b

Order semigroups M ∀a, b, c : a ¹ b =⇒ (c ⊗a) ¹ (c ⊗b)
C ∀a, b, c : c ⊗a ∼ c ⊗b =⇒ a ∼ b ∨a # b
K ∀a, b, c : c ⊗a ∼ c ⊗b

Semigroup transforms M ∀a, b, f : f (a ⊕b) = f (a)⊕ f (b)
C ∀a, b, f : f (a) = f (b) =⇒ a = b
K ∀a, b, f : f (a) = f (b)

Order transforms M ∀a, b, f : a ¹ b =⇒ f (a) ¹ f (b)
C ∀a, b, f : f (a) ∼ f (b) =⇒ a ∼ b ∨a # b
K ∀a, b, f : f (a) ∼ f (b)

Figure 5.4 Properties required for global optima, for several algebraic structures

left-condensed semigroup. Equally, for any left-condensed semigroup, such a func-

tion f can be found: let f (a)
def= a ⊗a. Consequently, the number of left-condensed

semigroups of order n, up to isomorphism, is the same as the number of partitions

of n. This series has generating function∏
k≥1

1

1−xk

and begins

1,2,3,5,7,11,15,22,30,42, . . .

There are therefore more left-condensed semigroups than might be immediately ap-

parent from considering the trivial examples, though most of these cannot be expec-

ted to be useful in routing.

Theorem 5.3 (Saitô). Let S and T be order semigroups whose orders are linear. Then

MONO(S ~×T) ⇐⇒ MONO(S)∧MONO(T)∧ (CANC(S)∨COND(T)) .

Note that we have one property applying to the first operand, and as an altern-

ative, another property applying to the second. This allows binary lexicographic

products to be monotonic for a wide choice of operands: while both must be mono-

tonic, only one needs to have the further constraint of being cancellative or con-

densed.

This theorem can be extended to order semigroups where the order is not ne-

cessarily linear. Analogues of the theorem can also be proved for bisemigroups, for

5. LEXICOGRAPHIC CHOICE 85

order transforms, and for semigroup transforms. The theorem statement is the same,

once the appropriate definitions of the properties have been adapted. See Figure 5.4

for how the properties appear for these different structures. What was MONO is now

M, and similarly CANC and COND have become C and K. The new names reflect the

generality of the properties: K applies to more than semigroups, so the name ‘COND’

is no longer appropriate.

Theorem 5.4. For each family of structures in Figure 5.4, if S and T are both from that

family, then

M(S ~×T) ⇐⇒ M(S)∧M(T)∧ (C(S)∨ K(T))

where the properties M, C and K are the appropriate versions.

Proof. See section A.3.

The combination of M and C yields ‘strict monotonicity’, the requirement that if

a is strictly preferred to b then c ⊗a is strictly preferred to c ⊗b. We define

SM = M∧C =∀a, b, c : a ≺ b =⇒ c ⊗a ≺ c ⊗b. (5.13)

It has previously been shown (Gouda and Schneider 2003) that if SM(S) and M(T),

then M(S ~×T). In contrast, our theorem gives necessary and sufficient conditions,

and in so doing reveals a second case: if T has the K property, and both S and T have

M, then M(S ~×T).

In extending Saitô’s result to preorders rather than linear orders, the properties

CANC and COND have changed to C and K. This is because of the new possibilities

for the ordering of elements which may be encountered in a preorder: they may be

equivalent, although not equal, or they may be incomparable. The new properties

take account of these new cases.

The new K condition requires only that c ⊗a always be equivalent to c ⊗b, rather

than that they should be equal, as required by the original COND. Similarly, the C

property has changed to allow cancelling when c ⊗ a is equivalent to c ⊗ b: then a

must be equivalent to b, or they must be incomparable.

The effect of this is to rule out the possibility that c ⊗a ∼ c ⊗b while a and b are

strictly ordered, a state of affairs which would result in monotonicity being violated

for the lexicographic product. Suppose that s1 ≺S s2 and s3 ⊗S s1 ∼S s3 ⊗S s2; then

(s1, t1) ≺ (s2, t2) lexicographically. For monotonicity, we need

(s3 ⊗S s1, t3 ⊗T t1) ¹ (s3 ⊗S s2, t3 ⊗T t2)

5. LEXICOGRAPHIC CHOICE 86

for any s3 and t3, and this is only true when

t3 ⊗T t1 ¹ t3 ⊗T t2.

Unless K(T) holds, this will not be true in all cases, causing monotonicity to fail.

The lack of C for S allows an apparent reversal of preferences, due to the previously-

ignored T component being revealed.

We will now see several examples of the lexicographic product as it appears for

the various algebraic families. These examples are intended to illustrate the diversity

of structures which can be handled by the algebraic framework, and the ease of in-

ference of the desired properties.

Example 5.3. Let S be (N,≤,F), where F is the set of functions

{λx . ax +b | a ∈N, b ∈N} .

This has the M property but not C, since if x ≤ y then ax + b ≤ ay + b for all natural

numbers a and b, but if a is zero then we can have ax +b = ay +b = b even though

x and y are different.

Let T be the set (N,≤, {κn | n ∈N}); this has both the M and the K properties.

Then S~×T is monotonic. This product resembles the order lexicographic product

(N,≤)~×(N,≤), but with a more complicated multiplicative part. As in the more famil-

iar lexicographic product, there are two numeric components to the metric which

are considered in order. But in this example, these two items of data are forced to

arise as follows:

1. The first value arises from a composition of linear functions, the input of the

composite function being determined by the source of the path. Suppose that

a given path has arcs labelled with λx . ai x + bi , for i in {1,2,3,4}. Then the

weight of the whole path is given by

a4a3a2a1x +a4a3a2b1 +a4a3b2 +a4b3 +b4

where x is the value originated at the source node.

2. The second value is entirely determined by weight of the final arc on the path.

This demonstrates that property deduction does not require very much additional ef-

fort for more complicated examples, compared to the simple examples usually seen.

5. LEXICOGRAPHIC CHOICE 87

Example 5.4. Let S be the bisemigroup (N,t,+)× (N,t,+). This direct product has

the M and C properties, because so does each of its components. If a graph is labelled

by S, then the results of the iterative matrix algorithm may not correspond to any

single path in the graph. For example, if there are two paths between node i and

node j , one of weight (3,5) and one of weight (7,4), then their sum in S is (3,4); this

information is not associated with any one path, but with a combination.

Similar situations occur with other algebras which admit incomparability. Note

that in this case, the algorithm is equivalent to performing two separate best-path

computations, one for each component of the product: so the weight (3,4) repres-

ents a path of weight 3 with respect to the first weighting and a separate path of

length 4 with respect to the second weighting. However, there are other algebras

for which results are not associated with a single path, and which cannot be decom-

posed in that way, such as the power set algebra (℘X ,∪,∩) for a fixed set X .

Now, let T be the bisemigroup ({>,⊥} ,∧,∨), and form the lexicographic product

S ~×T . Suppose that a graph is weighted by this product, and that every T -weight

is ⊥. Then every path also has a T -weight of ⊥, because ⊥ = ⊥∨⊥∨·· ·∨⊥. When

two paths are combined with the lexicographic (⊕) operation, we find that > only

emerges in two situations:

1. If the S-weights of the paths are incomparable, then the output T -weight will

be >, the identity for (∧).

2. If the S-weights are comparable, and the better path has a T -weight of >, then

the output T -weight will also be >.

Consequently, the T component of the algebra acts as a flag indicating whether or

not an S-weight is associated with a single path (⊥) or a combination (>).

Because we have M(S), C(S) and M(T), the product S~×T is monotonic, and can be

used for finding globally optimal paths. Each result ((a, b), t) consists of path weights

a and b, which are the weights of optimal paths with respect to the two weightings,

together with a flag value t showing whether or not the two weights correspond to

the same path.

Example 5.5. It may not be obvious how the C property for preorders contributes to

monotonicity. This example illustrates the need for the incomparability case. Let S

be the order semigroup (X ,=,C) for a fixed set X . Then S has the C property, because

the order is discrete. For T , take (N,t,+). Both S and T are monotonic.

5. LEXICOGRAPHIC CHOICE 88

Our theorem tells us that S ~×T should be monotonic, as indeed it is. The order

here is

(s1, t1) ¹ (s2, t2) ⇐⇒ (s1 = s2 ∧ t1 ≤ t2)

and the multiplication is given by

(s1, t1)⊗ (s2, t2) = (s1, t1 + t2).

Now, ((s, t)⊗(s1, t1)) ¹ ((s, t)⊗(s2, t2)) if and only if t +t1 ≤ t +t2 (and s = s). This is cer-

tainly implied by t1 ≤ t2, so we have monotonicity. See Figure 5.5 for an illustration

of the case X = {0,1}.

One possible use of this example can be seen when X = E , and each arc in the

graph has itself as a label—for example, an arc from node 17 to node 3 of weight 4

would be labelled ((17,3),4). When doing multipath routing in this scenario, each

origin-destination pair will end up with several paths; because of the lexicographic

order, there will be at least one path associated with each incoming adjacency of the

destination node. We will therefore have found not just the shortest overall path, but

a collection of shortest paths based on each possible next-hop. These paths will not

in general be of equal length.

Note that the erasure effect of the (C) operator in the definition of S means that

these longer alternative paths will not be propagated in the computation. So if a

tuple ((5,90),47) appears in the output, this is to be interpreted as the length of the

path that a packet would follow if it were forwarded from node 5 to its neighbour

node 90, which might not be the overall best choice, and subsequent nodes forwar-

ded it along the optimal path.

Example 5.6. In Example 5.5, the preorder semigroup S ~×T itself has the C property,

so we can choose any preorder semigroup U which is monotonic, and be sure that

S ~×T ~×U will be monotonic.

For example, let U be the ‘reliability’ algebra ([0,1],≥,×). This is monotonic be-

cause if p ≥ q then r p ≥ rq for any p, q and r in the interval [0,1]. This algebra is not

cancellative (because of the presence of 0), but it does not need to be. The product

algebra S ~×T ~×U is monotonic, and can be used just as S ~×T was in Example 5.5.

This demonstrates the possibilities of language-based design of routing algebra

for incremental development. We can reuse the previously-established result for

S ~× T in assessing the properties of the new algebra, rather than having to prove

everything all over again from scratch.

5. LEXICOGRAPHIC CHOICE 89

...

(0,5)

(0,4)

(0,3)

(0,2)

(0,1)

(0,0)

...

(1,5)

(1,4)

(1,3)

(1,2)

(1,1)

(1,0)

Figure 5.5 The order of Example 5.5, with dotted lines indicating multiplication by
the element (0,2).

A

B

C D

(10,1)

(30,1)

(10,1)

(10,1)

Figure 5.6 Graph for Example 5.7, showing that bandwidth-distance is not mono-
tonic.

Example 5.7. Two of the metrics that are most frequently considered for network

path selection are distance (or delay) and bandwidth. It is natural to model these

as S = (N,t,+) and T = (N,u,t) respectively. The product S ~×T is monotonic, by

Theorem 5.4, because S has M and C, and T has M. But T ~× S is not monotonic.

Figure 5.6 shows a labelled graph which illustrates the problem. The intermediate

node C prefers the wider and longer path ABC , but because the C D link is narrow,

the paths ABC D and AC D have the same bandwidth—and since AC D is shorter, it is

preferred at D.

5. LEXICOGRAPHIC CHOICE 90

For the construction of not just binary but n-ary lexicographic products, we will

need inference rules for the C and K properties. This will allow deduction of when

an n-ary lexicographic product is monotonic, and hence suitable for algorithms that

find global optima.

Theorem 5.5. For each family of structures in Figure 5.4, if S and T are both from that

family, then

C(S ~×T) ⇐⇒ C(S)∧C(T)

K(S ~×T) ⇐⇒ K(S)∧ K(T)

where C and K are the appropriate versions of the properties.

Proof. See Lemma A.9 through Lemma A.12 in Appendix A.

We are now able to derive an extension of Theorem 5.4 for n-ary lexicographic

products.

Theorem 5.6. Let S1,S2, . . . ,Sk be structures from one of the standard families. Then

M(S1 ~×S2 ~×·· ·~×Sk) ⇐⇒ (∀i ∈ {1, . . . , k} : M(Si))

∧ (∃i ∈ {1, . . . , k} : ∀ j : j < i =⇒ C(S j)∧ j > i =⇒ K(S j))

Proof. We proceed by induction on k. Note that the case k = 2 has already been

proved as Theorem 5.4. Suppose that the theorem statement holds for some partic-

ular k ≥ 2. Let S stand for the k-ary lexicographic product S1 ~×S2 ~×·· · ~×Sk , and let

Sk+1 be any algebra (of the appropriate kind). From Theorem 5.4, we have

M(S ~×Sk+1) ⇐⇒ M(S)∧M(Sk+1)∧ (C(S)∨ K(Sk+1)).

Now, by Theorem 5.5 we know that

C(S) ⇐⇒ ∀i ∈ {1, . . . , k} : C(Si).

The theorem statement for M(S) can then be expanded to yield

M(S ~×Sk+1) ⇐⇒ (∀i ∈ {1, . . . , k +1} : M(Si))

∧ (∃i ∈ {1, . . . , k} : ∀ j : j < i =⇒ C(S j)∧ j > i =⇒ K(S j))

∧ (∀ j : (j < k +1 =⇒ C(S j))∨ (K(Sk+1)))

⇐⇒ (∀i ∈ {1, . . . , k +1} : M(Si))

∧ (∃i ∈ {1, . . . , k +1} : ∀ j : j < i =⇒ C(S j)∧ j > i =⇒ K(S j)).

which is the theorem statement for k +1.

5. LEXICOGRAPHIC CHOICE 91

In general, n-ary lexicographic products that are monotonic can be divided into

three parts:

1. an initial part which has the C property;

2. a single algebra which need not have the C or K properties; and

3. a final part which has the K property,

where each individual algebra has M. This gives insight into the possible designs of

routing algebras based on the lexicographic product. In particular, we only get one

chance to include an algebra that has neither the C nor the K property (unless we are

willing to give up monotonicity). Another conclusion is that any tiebreakers which

follow this component must have K, which is a very restrictive property: there are

few examples of algebras that have it and are non-trivial.

Example 5.8. In Examples 5.5 and 5.6, we extended an algebra we had previously

designed with a new component. Suppose that we wanted to do something similar

with the distance-bandwidth algebra from Example 5.7. Let U stand for the new

component to be added.

From Theorem 5.6, we know that M(S~×T ~×U) requires that all three bisemigroups

should be distributive, and that one of the following holds:

1. both S and T have C;

2. S has C and U has K; or

3. both T and U have K.

Because the bandwidth algebra does not have C, the only way to achieve distributiv-

ity overall is for U to have the K property. That is, the multiplicative component of

U has to be a left zero semigroup. This is a very restrictive condition; there are few

useful choices of U which could be inserted here. From a point of view of a protocol

designer, the theorem has given us an important result: we should avoid putting an

arbitrary semigroup in the U position, unless we are willing to forfeit the possibility

of finding global optima. It would be extremely undesirable if a practical system was

designed using such a metric without knowledge of this consequence. Furthermore,

this design guidance was found as a straightforward application of the theorem, and

did not require its own proof or any experimentation.

5. LEXICOGRAPHIC CHOICE 92

Family Property Definition

Bisemigroups ND ∀a, c : a = a ⊕ (c ⊗a)
I ∀a, c : a = a ⊕ (c ⊗a) 6= (c ⊗a)

Order semigroups ND ∀a, c : a ¹ c ⊗a
I ∀a, c : a ≺ c ⊗a

Semigroup transforms ND ∀a, f : a = a ⊕ f (a)
I ∀a, f : a = a ⊕ f (a) 6= f (a)

Order transforms ND ∀a, f : a ¹ f (a)
I ∀a, f : a ≺ f (a)

Figure 5.7 Properties relating to local optima.

Another possible design might be to insert a new component at the front, so that

we would have R~×S~×T for some bisemigroup R. Again, the theorem for n-ary lexico-

graphic products tells us that any such R has to have both the M and the C properties

(it should be a cancellative semiring). The theorem has provided the precise con-

straint to be satisfied.

5.2.2 Local optima

For finding local optima, the properties of interest are ‘increasing’ and ‘nondecreas-

ing’. As with monotonicity, these look slightly different for each of the four structures,

while still expressing the same general idea: that extensions of paths are (strictly) less

preferred than the originals. Note that we always have I(S) =⇒ ND(S).

In the case of the lexicographic product, our general theorems are as follows.

Theorem 5.7. For each family of structures in Figure 5.7, if S and T come from that

family, then

ND(S ~×T) ⇐⇒ I(S)∨ (ND(S)∧ND(T))

I(S ~×T) ⇐⇒ I(S)∨ (ND(S)∧ I(T))

where the properties ND and I are as appropriate for the family.

Proof. See Section A.4 in Appendix A.

It is then straightforward to prove when an n-ary lexicographic product is in-

creasing.

5. LEXICOGRAPHIC CHOICE 93

Corollary 5.8. Let S1 through Sn be from one of the four families. Then I(S1 ~×·· ·~×Sn)

if and only if there is some k with 1 ≤ k ≤ n such that I(Sk) and for j < k, ND(S j).

So a lexicographic product that is increasing has three parts. First, there are zero

or more components that are merely nondecreasing. Then, a component that is

increasing; and finally, the remaining components need not have any special prop-

erties at all. This means that in our lexicographic products, we can use increasing

algebras to ‘guard’ any lower-priority algebras at all, and still be able to compute

local optima using these metrics.

We are primarily interested in increasing algebras that fail to be monotonic, al-

though of course there are those which have both properties. This is because the I

property is associated with a different and more subtle kind of optimality than the M

property. If an algebra is monotonic, then standard algorithms can be used to derive

global optima for the best-path problem. If the algebra happens to be increasing

as well, this fact does not affect the presence of that optimum or the difficulty of

finding it. Put another way, the algebras that are increasing but not monotonic rep-

resent a part of the mathematical territory that is less familiar and less explored; they

are interesting because they can be used in standard algorithms despite their lack of

monotonicity.

The next chapter will present many examples of how the increasing property

manifests in lexicographic products, in the context of interdomain routing.

5.3 Errors and infinities

There is a problem with the rules presented so far, connected with certain special

elements of routing algebras. It is not unusual for an order to have a greatest ele-

ment, or a semigroup to have a two-sided annihilator. For example, we might want

to work with the order (N∞,≤) which has ∞ as its greatest element. According to the

definition of the increasing property, there can be no increasing function on (N∞,≤),

since ∞ cannot be mapped to anything strictly greater than itself.

In the case of the distributive property, the problem is with finite structures. The

algebra (N∞,t,+) used for finding shortest paths will be realized in practice by some

finite algebra, such as ({0, . . . ,U} ,t,⊕), where x⊕y
def= (x+y)tU for some fixed upper

bound U . This (⊕) is not cancellative, even though the idealized (+) is cancellat-

ive. The failure noted in Figure 5.6 applies equally to this example: a lexicographic

product using the finite algebra as its first component may fail to support the finding

5. LEXICOGRAPHIC CHOICE 94

of global optima, due to a loss of the distributivity property.

The underlying problem is that there is an overloading of the semantics of ‘in-

finite’ or ‘error’ elements. There are at least three separate concepts which are con-

flated:

1. A greatest element of an order—one which simply happens to be greater than

any other, but is otherwise normal and does not represent any kind of failure.

2. An erroneous route, which should never be used for sending data. These may

be encoded as maximal elements, because then they will be less preferred than

any valid route.

3. A blank: in the operation of an algorithm, a greatest element might be used

as the initial shortest path estimate, so that it can be overwritten once better

information is found.

If infinite elements are regarded as erroneous, so that they represent the absence of

a route (or of a valid route), then there is something wrong with the definition of

lexicographic product. All definitions so far have permitted the appearance of pairs

where one component is erroneous. This is not necessarily the right choice, if we

are seeking to have the algebra incorporate the idea that all errors are mapped to a

greatest element which can then be ‘ignored’.

Although these elements are referred to as erroneous, this is not intended to sug-

gest that they are the result of misconfiguration, or represent faults in the network.

Rather, they are meant to be elements for which there is no associated route. This

will typically be because there is a route which exists but is for some reason unac-

ceptable in terms of preferences. It is natural to model such a situation in terms of

the preference structure of an algebra, since that is the purpose of using routing al-

gebra in the first place. This model may also be seen as modelling certain ‘filtering’

operations used in Internet routing, which permit routes to be excluded from the

selection process according to the desires of operators, in addition to the normal

routing procedure.

Instead, we should define the lexicographic product so that it is impossible to

have such ‘mixed’ pairs, if that is the behaviour that is desired. If greatest elements

are not intended to represent erroneous behaviour, but are simply elements which

happen to be large, then the usual definition is the appropriate one.

5. LEXICOGRAPHIC CHOICE 95

Definition 5.3. Let (S,¹S ,F) and (T,¹T ,G) be order transforms, where S and T have

greatest elements ∞S and ∞T respectively. Then S ~×∞ T is the following order trans-

form:

• The underlying set is (S \ {∞S})× (T \ {∞T })∪ {∞}, where ∞ is a new element.

• The order is lexicographic with greatest element ∞, so that

(s1, t1) ¹ (s2, t2) ⇐⇒ (s1 ≺S s2)∨ (s1 ∼S s2 ∧ t1 ¹T t2)

and (s, t) ≺∞.

• The function set consists of pairs (f , g) from F ×G , where

(f , g)(s, t) =
(f (s), g (t)) f (s) 6=∞S ∧ g (t) 6=∞T

∞ f (s) =∞S ∨ g (t) =∞T

and (f , g)(∞) =∞.

Call this the absorbing lexicographic product of S and T .

A similar definition can be made for semigroup transforms, and for the other

structures. The important factor here is that an ‘error’ in either component is raised

to the top level. This alternative definition is therefore appropriate for use when both

components are capable of experiencing erroneous conditions, encoded by means

of the greatest element. It seems that there should be a combinatorial explosion of

variations on these products: what if we want to raise errors in the first component,

but treat the greatest element of the second component as simply a large value? The

problem becomes worse when moving to n-ary products. Furthermore, it seems

that property deduction rules will have to be proved for each variation on the lexico-

graphic product. This may lead to a further explosion in the number of properties

which need to be tracked.

There is another unusual feature of the absorbing product in relation to semig-

roups. Recall that in S ~×T , if a and b are incomparable, then (a, x)⊕ (b, y) will be

(a ⊕S b,∞T). Is it truly correct to map this to a global ∞? In that case, all attempts to

combine incomparable elements are deemed erroneous.

There is evidently considerable difficulty even in defining the correct operator,

even before any attempt to prove its properties. We will now present one possible

way of dealing with the problem of errors, using the reduction functions of Sec-

tion 3.2. This approach may scale better than the definition of an entirely new oper-

ator for each possible notion of error.

5. LEXICOGRAPHIC CHOICE 96

The general principle is to define a reduction which will eliminate erroneous ele-

ments of an algebra, by mapping them onto a greatest element. If (X ,⊕,F) is a semig-

roup transform, with (⊕) commutative and having identity α, and E is a subset of X ,

then define a function rE on X by

rE (x) =
x x 6∈ E

α x ∈ E .
(5.14)

For this to be a reduction, it is required that E satisfies the property

∀e ∈ E , x ∈ X : (x ∈ E ∧ e ⊕x ∈ E)∨ (x = e ⊕x). (5.15)

It is then possible to define a new structure based on rE .

Definition 5.4. Let err(X ,E) be the semigroup transform (XE ,⊕E ,FE), where

• XE consists of those elements of X for which rE (x) = x,

• x ⊕E y is rE (x ⊕ y), and

• FE consists of functions fE for each f in F , and fE (x) = rE (f (x)).

This (⊕E) can be verified to be associative, since rE is a reduction. The other proper-

ties of err(X ,E) will depend on the choice of X and E .

The congruence associated with such a reduction is related to the notion of a

Rees congruence on a semigroup. A subset E of (X ,⊕) is an ideal if

∀x ∈ X , e ∈ E : (x ⊕ e ∈ E)∧ (e ⊕x ∈ E). (5.16)

For a given ideal E , the relation

x ∼E y
def⇐⇒ x = y ∨ (x ∈ E ∧ y ∈ E) (5.17)

is a congruence, called the Rees congruence with respect to E (Grillet 1995). In the

case of our rE , the congruence may not be a Rees congruence because E may not

satisfy (5.16). This is in line with our general principle of not enforcing conditions

which can be inferred: the definition of err(X ,E) makes sense even when E is not an

ideal, though it may not have desirable properties.

If X is a lexicographic product S ~×T where S has an identity αS , we can choose

E1 = {αS}×T. (5.18)

5. LEXICOGRAPHIC CHOICE 97

This is an appropriate choice since the possible loss of monotonicity comes when

there are elements of S ~×T for which

s1 = s1 ⊕S s2 6= s2

f (s1) =αS = f (s2)

t2 = t1 ⊕T t2 6= t1

as then we have

(s1, t1) = (s1, t1)⊕ (s2, t2) 6= (s2, t2)

but

(f (s1), g (t1)) 6= (f (s1), g (t1))⊕ (f (s2), g (t2)) = (f (s2), g (t2)),

violating monotonicity due to the absence of cancellativity in S. In this example, we

do not attempt to handle errors emanating from T . It can be verified that this E1

satisifies (5.15), and so err(S ~×T,E1) is a semigroup transform.

Theorem 5.9. The algebra err(S ~×T,E1) is distributive if

(f , g)(s1, t1)⊕ (f , g)(s2, t2) = (f , g) ((s1, t1)⊕ (s2, t2))

for all f in F , g in G, s1 and s2 in S \ {αS}, and t1 and t2 in T .

Proof. See Section A.5 in Appendix A.

In a similar way, we can handle errors from the second component of a lexico-

graphic product. There is a particularly important use for this capability in the case

of finding a local optimum. For an algebra that is increasing but not necessarily

monotonic, convergence is not assured if paths are permitted to have loops. If, how-

ever, it is only possible for simple paths to occur, then termination is guaranteed for

an increasing algebra.

There are several ways in which this could be achieved. One is for the host al-

gorithm to detect loops and intervene—so an otherwise good path would not be

taken if it contained a loop. Another possibility is for this to happen ‘automatic-

ally’ by putting path information into the algebra, and forcing paths with loops to

be considered as erroneous. Each of these ideas has merits. The main argument

against including path information as a component of a routing algebra is that it is

unnecessary and overcomplicated, compared to modifying an algorithm. It is easy

to underestimate the difficulty of such changes: consider the ‘minimal set’ algebras.

Avoiding loops for those algebras would mean that the algorithm would need to track

5. LEXICOGRAPHIC CHOICE 98

the contents of each set against a separately-maintained set of paths, duplicating the

logic. If the path is part of the algebraic structure, then the desired behaviour is still

obtained, without any need to rewrite the stock algorithm. In addition, as a matter

of design philosophy, decisions about which paths ought to be taken naturally be-

long as part of the algebra, which exists to encode path selection rules, as opposed

to being part of the algorithm, whose purpose is to solve the generic optimization

problem.

We will show an example of how to ensure, in a multipath setting, that only

simple paths emerge from the algorithm. The standard algebra of paths is to order

them by length: we have a preference relation rather than a semilattice. A variation

on the minset construction will convert such an algebra into one which can be used

in the context of matrix operations.

Let P be the algebra of paths (N∗,¹,C), where p ¹ q if and only if p is shorter

than q, and C consists of functions cn for all n in N , which concatenate the node n

onto the given path. It would also be possible for (¹) to be the complete order on P .

Let (S,≤,F) be an order transform, and construct the lexicographic product S ~×P .

Now, let E2 be the subset of S ~×P consisting of those pairs which contain a non-

simple path: {
(s, p) ∈ S ×P

∣∣ p is not simple
}

. (5.19)

The err construction cannot be used directly, since E2 does not satisfy the required

property (5.15). However, there is a reduction which can be used over subsets of S~×P .

Let r be the function

r(A)
def= min(A \ E2); (5.20)

this satisfies the reduction axioms (3.7) and (3.8). Consquently, a semigroup trans-

form can be constructed where

1. the elements are subsets of S ~×P which are fixed points of r ;

2. the operation (⊕) is given by A⊕B
def= r(A∪B); and

3. the functions are pairs (f , cn) for f in F , where

(f , cn)(A)
def= r({(f (s), cn(p) | (s, p) ∈ A}).

It can be seen that this algebra implements the simple paths criterion in the case of

multipath routing: if during the course of computation a non-simple path is com-

puted, it and its associated S-value will be removed from the candidate set.

5. LEXICOGRAPHIC CHOICE 99

It has been demonstrated in Chapter 4 that algorithmic convergence is guaran-

teed for a minimal set algebra if only simple paths are permitted, and the underlying

algebra is increasing. So if S ~×P is increasing, then this new algebra which forces

minset(S ~×P) to be restricted to simple paths will satisfy the requirements. In partic-

ular, if S is increasing then S ~×P is increasing, by Theorem 5.7.

These examples serve as further evidence that the split between algebra and al-

gorithm is useful, and that many capabilities can be put in the algebra as opposed to

forming part of the algorithm. In the next chapter, this idea will be further tested by

the modelling of network partitions: we will see that this too can be handled in the

algebra, without modifications to the standard algorithms.

100

Chapter 6

Modelling network partitions

This chapter will illustrate the use of the metalanguage approach in the modelling

of network partitions. In particular, the lexicographic product of Chapter 5 will be

an important construction, because it can be used to model the way in which local

policy can be overridden by constraints at a global level. Property deduction rules

will be derived, illustrating the compositional approach to design that is enabled by

the metarouting world-view.

The division of networks into areas is an important mechanism for the construc-

tion and maintenance of large networks. This especially applies to networks like the

Internet, which are composed of heterogeneous systems and managed by separate,

possibly competing, entities. There are many possible ways in which this division

might work, some of which are represented in current practice.

In particular, this chapter seeks to extend our knowledge of the design space sur-

rounding the Border Gateway Protocol. BGP is the unique example of an interdo-

main routing protocol, and much is known about its behaviour. However, less is

known about whether these features are quirks of BGP’s design, or whether they are

intrinsic to the interdomain routing problem. In this chapter, we will see that lack of

monotonicity is inevitable for any protocol that seeks to capture the nature of inter-

domain relationships, and provide route optimization at the same time; if only one

of these tasks is attempted, then the protocol can be monotonic. Other features of

BGP, such as the use of centrally-assigned autonomous system numbers or the lack

of end-to-end attributes, are not essential. This points the way to a potential future

alternative design that differs only slightly in implementation from the current BGP,

while permitting far more expressivity to network operators.

In trying to understand possible area-based routing designs, it is natural to seek

standard terminology among the various schemes that we know about. This is a ne-

cessary precursor to the building of a model of interdomain routing. A model should

reflect conditions in the real world, so that conclusions drawn from its analysis can

6. MODELLING NETWORK PARTITIONS 101

later be implemented in reality. But it is not appropriate to simulate every nuance

of current practice; rather, the goal is to identify just those features of routing and

partitioning which are relevant.

6.1 Network areas

We will now look in detail at examples of partitioning in the Internet, in order to

identify some common ground.

The Internet is the premier example of a ‘network of networks’, being a composite

system not only made up of heterogeneous equipment, but also under the combined

administrative control of a multiplicity of economic agents. The network is almost

invariably understood to be a decentralized, distributed system; there are compar-

atively few areas in which participating networks can be said to be hierarchically

organized. These include:

1. The social function by which new technology is standardized. The Internet

Engineering Task Force and its associated bodies are ‘central’ in the sense that

they possess a unique authority, but this is more a matter of coordination than

of command.

2. IANA is responsible for coordinating the assignment of various names and

numbers, such as IP address blocks, protocol numbers, and autonomous sys-

tem numbers.

3. The Domain Name System is administratively and structurally hierarchical.

4. Sometimes, it makes sense to distinguish between ‘tiers’ of service providers,

corresponding to the degree to which they are operationally independent.

The last of these points is the most relevant for a model of routing. It is important

to emphasize that the grading of organizations into tiers is not an inherent property

of the technology (one does not configure a router with a flag that indicates “I am a

Tier 2 provider”), but one which can be observed, imprecisely, by examining that or-

ganization’s relationships with others. This pattern frequently recurs in our attempts

to understand the Internet at the level of independent participating networks.

For example, the coarsest partitioning of the Internet is into autonomous sys-

tems (ASes). An AS is commonly understood to be a network under a single ad-

ministrative control, consisting of all and only those systems under that authority.

6. MODELLING NETWORK PARTITIONS 102

However, there are several ways in which this definition does not match reality. This

stems from the fact that the term ‘AS’ only has meaning within the context of BGP,

where it denotes an area that has its own external routing policy. This does not ne-

cessarily overlap with other notions of organizational independence.

• A single organization may use multiple AS numbers, if different parts of the

organization require separate routing policies. This may also occur as a result

of a corporate merger or acquisition.

• Multiple organizations may share an AS number if they have the same policy.

For example, two companies which are multi-homed to the same two pro-

viders could use the same AS number.

• Organizations which lack an externally visible routing policy, such as most

single-homed networks, need not have an AS number at all.

• AS numbers in the private range (64512–65534) can be reused at will for sub-

areas of an autonomous system, as long as such information does not ‘leak’

outside the boundary of the AS.

• Assigned or unassigned numbers are occasionally hijacked for nefarious pur-

poses, or used accidentally.

• AS 23456 has a special meaning, for the transition from 16-bit to 32-bit AS num-

bers.

It is therefore important to be clear about what is meant by the name ‘autonomous

system’, and how this idea relates to other notions of network partition. Because of

the BGP precedent, this chapter will use the term to mean a collection of systems

having the same external routing policy, without any particular implication for how

these systems might be owned or administered. That policy will be derived in part

from the nature of the relationships between the owners or controllers of an AS, and

the owners or controllers of its neighbours.

Regarding the relationships between ASes, it has similarly been observed that

interactions can often be classified into types. In the influential model of Gao and

Rexford (2000), these include customer-provider and peer-peer relationships. The

distinction is that customers pay providers for their connectivity, whereas peers ex-

change routes and traffic on a mutual basis. These categories are not exhaustive, and

do not in themselves cover the wide variety of legal or contractual relationships that

6. MODELLING NETWORK PARTITIONS 103

might exist with respect to two ASes. For example, peering agreements would gener-

ally cover only certain categories of traffic, perhaps providing financial sanctions for

violations; this would be reflected in the routing policy, but can still be understood to

be in the nature of a peering relationship. Even more so than with the AS definition,

these terms are the result of observation of existing systems: they are not built in to

the technology, but are characteristic of the way in which the technology is typically

used. In practice, it can be difficult to label relationships in this way, particularly for

organizations with a global presence; two ASes might have a peering relationship in

one part of the world, and a customer-provider relationship elsewhere, for example.

The way in which routes are propagated and selected among customers, pro-

viders and peers may or may not be safe. Gao and Rexford (2000) identify constraints

on routing policy which enable a stable routing solution to be found; these have

been encoded algebraically by Griffin and Sobrinho (2005). In our algebraic formal-

ism, this appears as the order transform (L,≤,F) where

• L is the set
{

c, r, p,∞}
of identifiers representing customer routes, peer routes,

provider routes and forbidden routes respectively.

• (≤) is given by c < r < p <∞.

• F is the set {C ,R,P} of functions to be attached to arcs; the values of these

functions on L are given as follows:

c r p ∞
C c ∞ ∞ ∞
R r ∞ ∞ ∞
P p p p ∞

This table expresses, for example, that all routes received from a provider should be

considered as provider routes, whether they come from that provider’s customers,

peers, or its own upstream providers. If a route is passed on by a customer from one

of their providers, we should not accept it: C (p) =∞. As written, these rules disallow

‘transitive peering’, where a system passes on routes learnt from one peer to another

of its peers. This can be permitted by instead defining R(r) = r . The existence of

this algebra shows that path algorithms can operate not only based on a conven-

tional notion of cost, but also on policy, which might seem like a more slippery and

ill-behaved concept. In fact, certain aspects of the economic and commercial re-

lationships among autonomous systems can be encoded in algebra; they therefore

6. MODELLING NETWORK PARTITIONS 104

become usable by generic algorithms, and susceptible to property analysis. For ex-

ample, (L,≤,F) is both monotonic and increasing.

In BGP, autonomous system numbers appear in the AS_PATH route attribute.

This attribute simultaneously serves many functions:

• It prevents AS-level loops. If the same AS number appears more than once in

a path, then the route will not be used.

• It allows some route optimization. A shorter AS_PATH is better than a longer

one.

• It permits filtering based on the downstream path.

• It permits monitoring and measurement of the AS path.

In addition, route preferences can be affected by AS padding and AS poisoning. Pad-

ding artificially lowers the preference of a route by repeating an AS number in the

path, so that it will appear longer. This works because the uniqueness criterion is

only applied in relation to each new entry in the path. Poisoning can be used to

stop a route from being taken by some distant AS (presumably in favour of another

route that would otherwise be less-preferred) by adding that AS’s own number to the

AS_PATH of the route to be suppressed.

Although this attribute is typically thought of as being a list of numbers, it in fact

has a more complex structure. The path is a sequence of structures, each of which is

either a list or a set of AS numbers. The admission of sets allows route aggregation

while still maintaining some notion of the order of ASes along a path in the absence

of aggregation. This feature is intended to improve BGP performance by merging

route data from several prefixes together, and therefore reducing the size of routing

tables and the number of routing messages. The AS_PATH attribute also incorpor-

ates lists and sets of confederations, which are regions below the AS level.

There are other contexts in which AS numbers may appear, mainly to support

monitoring and analysis. For example, if routes are aggregated, the responsible AS

puts its own number into the AGGREGATOR attribute. This is intended to aid de-

bugging rather than as an input to route selection. BGP community numbers typ-

ically include the number of the responsible AS, which allows these values to be

defined on a per-AS basis without global coordination. Finally, AS numbers are used

between communicating routers in order to determine whether or not they belong

to the same autonomous system, and therefore whether the adjacency should be op-

6. MODELLING NETWORK PARTITIONS 105

erated as an external or internal connection. See Huston (2006) for a discussion of

autonomous system numbers and their uses.

6.2 The road to BGP

It is well known that the metric used by BGP is not monotonic, and does not lead to

the guaranteed finding of globally optimal routing solutions. In this section we will

see how this non-monotonicity arises, and in particular how it seems to be unavoid-

able for designs that are similar to BGP. These will be those metrics which attempt to

do some route optimization, but subject to asymmetric policy constraints after the

fashion of the customer-provider-peer system.

The hallmark of BGP’s exterior metric is the combination of local policy and op-

timization. The LOCAL_PREF attribute allows each AS to independently decide on

the preference assigned to incoming routes; and it is more significant in route choice

than the AS_PATH. The route length optimization carried out through the AS_PATH

attribute is always subject to the demands of policy, as expressed in local preference

(among other means). The customer-provider-peer model is one attempt at identi-

fying ways in which this attribute can be used so as to avoid protocol divergence.

We can model just these two attributes using a lexicographic product. Let (L,≤,F)

be the customer-provider-peer algebra from the previous section, and let (P,¹,G) be

as follows:

• P is the set of all finite lists of AS numbers, plus the special value >.

• The choice relation ¹ is defined so as to prefer shorter paths, regardless of their

content, and so that > is the unique maximal element.

• The operations are the functions cn , for each AS number n, where cn(`) returns

n prepended to ` if n is not already present in `, and > otherwise.

This represents AS paths. Note that we do not attempt to handle path length overflow.

There is no explicitly defined limit on the length of a path in the BGP standard, but

there are limits on the byte size of an attribute and on the size of a message which

imply that path length is bounded in practice. Existing implementations may have

even smaller limits on the path lengths they are able to handle.

Now consider the product L~×P . This will be monotonic if L and P are both mono-

tonic, and if either L is cancellative or P is constant. We observe that L is clearly not

cancellative, and P is clearly not constant. Therefore L~×P cannot be monotonic.

6. MODELLING NETWORK PARTITIONS 106

Furthermore, it is apparent that even simplified variations on L~×P will also fail to

be monotonic. For example, the carrier set of L could be reduced in size, or P could

be changed to a simple hop count rather than a list: but their lexicographic product

would remain non-monotonic. This demonstrates that it is not necessary to go very

far down the road to BGP before monotonicity is lost.

The presence of these two attributes, in that order, is of critical importance not

only for BGP, but for any routing scheme applicable to the present Internet. In partic-

ular, the local preference attribute allows the encoding of economic relationships, as

with the customer-provider-peer model. If this is combined with some form of route

optimization, with the proviso that route quality is always subject to local preference,

then we already have L~×P even before other possible attributes are considered. The

optimization component could be omitted, so that interdomain routes were determ-

ined solely by local preference, and the resulting algebra would be monotonic. How-

ever, it seems doubtful that a BGP-like protocol would be effective without some

form of route optimization.

This is evidence in favour of the proposition that not only BGP, but also designs

similar to BGP, do not generally admit globally optimal solutions. Instead, we should

only expect to find a local optimum, or Nash equilibrium; this corresponds to the

algebra having the ‘increasing’ property, as is indeed the case with our L~×P .

6.3 The scoped product

The lexicographic product is all very well as a construction if we are seeking only to

model the fact that attributes are considered in order of significance. But when it

comes to the use of areas, the simple lexicographic product is not enough to encode

all of the desired behaviour. This section will explain and explore the scoped product,

an operator that is similar to the lexicographic product but also allows partitioning

of a network into domains.

Abstractly, the main characteristic of interdomain route choice is that there are

exterior attributes and interior attributes, as illustrated in Figure 6.1. There may also

be end-to-end attributes whose computation ignores area boundaries. The exterior

attributes are those relating to the parts of a route that go between different areas; for

example, the AS_PATH of BGP records the sequence of areas (ASes) through which

a route passes, but it does not include information relating to the interior of an area

(aside from the confederation information previously discussed). In contrast, the in-

terior attributes relate to the route as it passes through a single area: these are not

6. MODELLING NETWORK PARTITIONS 107

Figure 6.1 Route calculation can be the result of a combination of internal and ex-
ternal metrics. The double arrows are external arcs, which connect different areas.
Within each area, shown with a dashed line, are the internal arcs. The black nodes
are border routers and the white nodes are interior routers.

carried over between one area and the next. An example in BGP is the ‘IGP distance

to next hop’, which is the distance, according to some interior protocol, to the appro-

priate border router in the current AS. Note that since the value is reset on passing

to a new AS, it is possible for different areas to use different IGPs; in general, the set

of interior attributes need not be the same between one area and the next, as long as

the appropriate algebraic properties are satisfied at a global level.

A scoped product can be defined over semigroup transforms or over order trans-

forms.

Definition 6.1. Let (S,⊕,F) and (T,�,G) be semigroup transforms. Then S � T is a

semigroup transform, the scoped product of S and T . Its carrier set is S ×T and its

operation is the lexicographic product of the ⊕ and � operations. Its set of functions

is {
e(f , t)

∣∣ f ∈ F, t ∈ T
}]{

i (g)
∣∣ g ∈G

}
where e(f , t)(s′, t ′) = (f (s′), t) and i (g)(s′, t ′) = (s′, g (t ′)).

Definition 6.2. Similarly, let (S,≤S ,F) and (T,≤T ,G) be order transforms. Then the

scoped product S � T is defined to be (S ×T,≤,H), where (≤) is the lexicographic

product of (≤S) and (≤T), and H is the same set of functions as in the previous defin-

ition.

The purpose of these definitions is to amend the notion of lexicographic choice

with the idea that different attributes are associated with different network scopes.

So the route choice is still lexicographic, but there is a new twist as to how path

weights are derived in the first place. In the scoped product setting, there are two

kinds of arcs—internal and external—to go along with the two components of the

lexicographic product. An internal arc only affects the value of the internal metric.

6. MODELLING NETWORK PARTITIONS 108

By contrast, the external arcs have two roles: firstly, they alter the external metric

value, and secondly, they provide a new internal value as a basis for subsequent

route calculations. This means that the internal metric is indeed isolated to each

domain, since passing from one domain to another (via an external arc) causes the

value to be replaced.

Example 6.1. As a basic example of the scoped product, let

S = T = (N,min,
{
λy . x + y

∣∣ x ∈N}
).

Then S�T allows us to maintain two different distance measurements: one external,

and one internal. Unpacking the scoped product definition, we find that the two

kinds of functions which can be attached to arcs operate as follows:

i (t)(n, m) = (n, m + t) (internal arc)

e(s, t)(n, m) = (n + s, t) (external arc).

As desired, the internal distance is reset upon entering a new area, and within an

area the external distance is held constant.

Figure 6.2 shows an example network configured with this algebra. The node Z

originates the pair (0,0).

Subsequently, two paths will become visible at B: the lower path has weight (5,6)

and the upper path has weight (5,10), because

(5,6) = (i (4)◦ e(5,2)◦ i (1))(0,0)

(5,10) = (i (4)◦ e(5,6)◦ i (1))(0,0).

The external weight in each case is 5, because the two external arcs both had this as

their external weight. But the internal weights are different, and this happens even

though both paths contain an internal arc of weight 4 and another of weight 1. The

reason is that different values (2 and 6) were used to initialize the internal T weight

on entry into the final region. The path that is chosen is (5,6).

The node A will see three paths. There is a path going through B, whose weight

is i (3)(5,6) = (5,9). The weights of the other two are

(4,2) = (i (2)◦ e(1,0)◦ i (2)◦ i (18)◦ i (1)◦ e(3,0)◦ i (1))(0,0)

(4,6) = (i (6)◦ e(1,0)◦ i (3)◦ i (1)◦ e(3,0)◦ i (1))(0,0).

The path (4,2) is chosen; (5,9) is rejected because its external weight of 5 is larger

than 4, and (4,6) is rejected because its internal weight of 6 is larger than 2. Note that

6. MODELLING NETWORK PARTITIONS 109

Z
1

1

1

3

18

2

B

A

4

4

6

2

3

(3,0)

(5,2)

(5,6)

(1,0)

(1,0)

Figure 6.2 A scoped product that combines an external distance with an internal
distance. The numbers on the internal arcs are the increments to be added to the
internal distance. The pairs (a, b) on the external arcs represent the weight a to be
added to the external distance, and the value b with which the internal distance will
be initialized on entering the target region.

the internal weight calculation depends only on the final region: it is not equal to

the total weight of all internal arcs along the path.

For analysis of this product from the point of view of its algebraic properties, and

to permit exploration of alternative, related definitions, it is useful to have a defini-

tion that is in terms of more primitive operations.

Definition 6.3. Let copy be the unary operator given by

copy(S,⊕,F)
def= (S,⊕, {id}) (6.1)

copy(S,≤,F)
def= (S,≤, {id}) (6.2)

where id is the identity function on S.

6. MODELLING NETWORK PARTITIONS 110

Definition 6.4. Let replace be the unary operator given by

replace(S,⊕,F)
def= (S,⊕,K (S)) (6.3)

replace(S,≤,F)
def= (S,≤,K (S)) (6.4)

where K (S) is the set {κs | s ∈ S}.

Definition 6.5. Let] be the binary operator given by

(S,⊕,F)] (T,�,G) =
(S,⊕,F]G) if (S,⊕) = (T,�)

undefined otherwise
(6.5)

(S,≤S ,F)] (T,≤T ,G) =
(S,≤S ,F]G) if (S,≤S) = (T,≤T)

undefined otherwise.
(6.6)

We can now define

S �T
def= (S ~× replace(T))] (copy(S)~×T) (6.7)

where S and T are either both semigroup transforms, or both order transforms.

It is now possible to provide a straightforward proof of the property deduction

rules for the scoped product, since the rules for the lexicographic product are known,

and those for copy, replace and (]) are simple to work out. For the (]) operator,

when S]T is defined, we have

M(S]T) ⇐⇒ M(S)∧M(T) (6.8)

C(S]T) ⇐⇒ C(S)∧C(T) (6.9)

K(S]T) ⇐⇒ K(S)∧ K(T). (6.10)

The situation for copy and replace is even simpler. From the definitions of M and C,

it is clear that copy(S) has both of these properties no matter which algebra is chosen

for S. The K property is more difficult to satisfy. In the case of order transforms we

have

K(copy(S)) ⇐⇒ ∀x, y ∈ S : x ∼ y (6.11)

whereas for semigroup transforms the rule is

K(copy(S)) ⇐⇒ ∀x, y ∈ S : x = y. (6.12)

6. MODELLING NETWORK PARTITIONS 111

In the same way, replace(S) always has the M and K properties, but there are stricter

conditions in the case of C. For order transforms,

C(replace(S)) ⇐⇒ ∀x, y ∈ S : x ∼ y ∨x # y (6.13)

and for semigroup transforms,

C(replace(S)) ⇐⇒ ∀x, y ∈ S : x = y. (6.14)

All of these rules follow directly from the relevant definitions.

It is now possible, given the definition of the scoped product in terms of other

operators for which the deduction rules are known, to find the counterpart of The-

orem 5.4: a rule describing precisely when a scoped product has the M property.

Theorem 6.1. If S and T are both order transforms or both semigroup transforms,

then

M(S �T) ⇐⇒ M(S)∧M(T).

Proof.

M(S �T)

⇐⇒ M(S ~× replace(T))∧M(copy(S)~×T)

⇐⇒ M(S)∧M(replace(T))∧ (C(S)∨ K(replace(T)))

∧M(copy(S))∧M(T)∧ (C(copy(S))∨ K(T))

⇐⇒ M(S)∧M(T).

Compared to the rule for lexicographic product, it seems that scoped products

are more forgiving. All that is needed for monotonicity is that the two inputs be

monotonic; further properties, such as being cancellative or condensed, are not re-

quired.

A similar process can be used to find a deduction rule for the ‘increasing’ prop-

erty. We first need to identify the conditions for I and ND in the context of (]), copy

and replace. As before, these follow immediately from the definitions of the operat-

ors and properties. We have

I(S]T) ⇐⇒ I(S)∧ I(T) (6.15)

for (]), for both semigroup transforms and order transforms. But I does not hold

for either copy(S) or replace(S), since in both cases we would be able to deduce

6. MODELLING NETWORK PARTITIONS 112

∀s ∈ S : s 6= s. For the ND property, we have ND(copy(S)) for all S, but ND(replace(S))

if and only if

∀x, y ∈ S : x ∼ y

in the order transform case, and

∀x, y ∈ S : x = y

in the semigroup transform case.

The deduction rule for the increasing rule in scoped products is now easy to

prove.

Theorem 6.2. If S and T are both order transforms or both semigroup transforms,

then

I(S �T) ⇐⇒ I(S)∧ I(T).

Proof.

I(S �T)

⇐⇒ I(S ~× replace(T))∧ I(copy(S)~×T)

⇐⇒ I(S)∧ I(T).

This is less forgiving than the lexicographic product, because I is now required

for both components. This is because new arcs are either interior or exterior arcs, so

for a route to be increasing, both kinds of arcs need to increase the cost of the route;

in other words, the interior and exterior algebras must both be strictly increasing.

Example 6.2. Recall Example 5.7, the lexicographic product of distance (S) and band-

width (T). It was demonstrated that the product S ~×T is monotonic, but T ~×S is not.

What about S � T and T � S: are these monotonic, and what does the algebra look

like in each case?

Unlike as with the lexicographic product, both of these two algebras are mono-

tonic. This means that in both cases, global optima exist and can be found by stand-

ard algorithms. The verification is straightforward. Note that in order to use the copy

and replace operators, we use semigroup transforms rather than bisemigroups in

the construction of the product. We have

S = (N,t,
{
λy . x + y

∣∣ x ∈N}
)

T = (N,u,
{
λy . x t y

∣∣ x ∈N}
)

6. MODELLING NETWORK PARTITIONS 113

and it is obvious that monotonicity holds for both, since

(λy . x + y)(a tb) = x + (a tb)

= (x +a)t (x +b)

= (λy . x + y)(a)t (λy . x + y)(b)

and

(λy . x t y)(a ub) = x t (a ub)

= (x ta)u (x tb)

= (λy . x t y)(a)u (λy . x t y)(b).

Therefore, by Theorem 6.1, the products S �T and T �S are monotonic.

The semigroup transform S �T can be described explicitly as follows.

• The underlying set isN×N, so each element is a pair (d, b) of a distance d and

a bandwidth b.

• The operation (⊕) implements lexicographic choice:

(d1, b1)⊕ (d2, b2) =


(d1, b1 ub2) if d1 = d2

(d1, b1) if d1 < d2

(d2, b2) if d2 < d1.

So to choose among a set of paths, we first pick the paths whose lengths are

smallest, and from these pick those whose bandwidths are greatest.

• The set of functions is

{e(s, t) | s ∈ S, t ∈ T }] {i (t) | t ∈ B}

where e(s, t)(d, b) = (s+d, t) and i (t)(d, b) = (d, bt t). The ‘external’ functions

act by adding on a distance value to the previous distance, and replacing the

previous bandwidth value with an entirely new one. The ‘internal’ functions

maintain the previous distance value, and add a new potential bottleneck to

the previous bandwidth value (so it may be that the bandwidth is unchanged

if the new bandwidth t is larger than the previous bandwidth b).

We can see that this algebra represents an area-based routing scheme wherein the

inter-area path is chosen on the basis of its length, and the intra-area paths on the

6. MODELLING NETWORK PARTITIONS 114

basis of bandwidth. Note that internal paths make no contribution to the length,

and bandwidth information does not leak from one area to the next.

Monotonicity can be verified directly. For external arcs we have

e(s, t) ((d1, b1)⊕ (d2, b2)) = (s + (d1 td2), t)

e(s, t)(d1, b1)⊕ e(s, t)(d2, b2) = (s +d1, t)⊕ (s +d2, t)

= ((s +d1)t (s +d2), t)

and in the case of internal arcs,

i (t) ((d1, b1)⊕ (d2, b2)) =


(d1, (b1 ub2)t t) if d1 = d2

(d1, b1 t t) if d1 < d2

(d2, b2 t t) if d2 < d1

i (t)(d1, b1)⊕ i (t)(d2, b2) = (d1, b1 t t)⊕ (d2, b2 t t)

=


(d1, (b1 t t)u (b2 t t)) if d1 = d2

(d1, b1 t t) if d1 < d2

(d2, b2 t t) if d2 < d1.

Therefore M(S �T) is assured.

Like the (~×) operator, the (�) operator is associative. This fact allows the imple-

mentation of areas at more than one level of nesting in a straightforward way. In the

current Internet, there is some capability for supporting nested areas. BGP allows

subregions of an internal-BGP area to be defined, known as confederations, which

operate to some extent as autonomous systems within the larger autonomous sys-

tem. Although in principle this can be extended to arbitrary depth, current techno-

logy only allows such configurations in a restricted context. For example, the sim-

ultaneous use of confederations and route reflectors has no defined semantics, and

is therefore only possible if users commit to a particular vendor whose equipment

offers the behaviour they desire.

Example 6.3. Consider a triple scoped product S � T �U . The associativity of (�)

means that there is no ambiguity in writing a triple scoped product in this way.

The choice is lexicographic, as before, but there are now three different kinds

of function that may be attached to arcs. These correspond to the three levels in

the hierarchy. The labels on arcs follow three different patterns depending on their

position in the network topology.

6. MODELLING NETWORK PARTITIONS 115

The different kinds of arcs are:

1. arcs (f , t ′, u′) at the S level, between one T area and another;

2. arcs (g , u′) within a T area, between one U area and another;

3. arcs h within a U area.

Here, f , g and h are functions on S, T and U respectively, and t ′ and u′ are elements

of the sets T and U . These functions operate on triples (s, t , u) as follows:

(f , t ′, u′)(s, t , u) = (f (s), t ′, u′) (6.16)

(g , u′)(s, t , u) = (s, g (t), u′) (6.17)

h(s, t , u) = (s, t , h(u)). (6.18)

The analogy with the binary scoped product is clear. At the innermost level, func-

tions like h simply alter the U value, leaving the others alone. At the intermediate

level, the T value is altered, the S value is maintained and the U value is replaced,

because these arcs correspond to passage from one U area to another, but remain

within a single T region. At the outermost level, the S value is altered and both the T

and the U values are replaced, because these arcs represent passage to a new T area,

and therefore to a new U area as well.

The associativity of (�) means that these relationships can be understood in sev-

eral ways. The bracketing S � (T �U) corresponds to the perception that (T �U)

is a single algebra, which happens to be implemented as a scoped product. Equa-

tion 6.16 shows that the outer S value is altered while the inner (T �U) value is re-

placed; in both Equation 6.17 and 6.18 the S value is maintained while the (T �U)

value is altered.

Alternatively, the bracketing (S �T)�U groups the outer two levels together as a

single algebra. In Equation 6.16 and 6.17 this outer value is altered while the inner U

value is replaced, whereas in Equation 6.18 the outer (S�T) value is preserved while

the U value is altered.

Figure 6.3 shows how the three different kinds of function are attached to arcs.

So far, our use of areas has involved the segregation of attributes into categor-

ies of internal and external. This contrasts with the algebras seen previously, for

example in Chapter 5, in which the attributes were end-to-end; that is, each arc

along the path contributed to the value. In area-based routing schemes, it is argu-

able that some kind of end-to-end measurement could be helpful in determining

6. MODELLING NETWORK PARTITIONS 116

Figure 6.3 Nested areas with a triple scoped product. Double arrows are S arcs,
thick arrows are T arcs, and thin arrows are U arcs. The dashed lines indicate the
boundaries of a (T �U) region, and the dotted lines show each U region within a
T region. The nodes are shaded according to whether they have arcs at the S level
(black), at the T level (grey) or at the U level (white). This extends the previous divi-
sion between internal nodes in white and external or border nodes in black.

the best routes. Several design choices are possible, and as the following examples

demonstrate, each of these has implications for the correctness conditions of the

whole algebra. Broadly speaking, if we start with S � T so that there is already a

lexicographic choice, then a new end-to-end attribute U could be inserted in three

positions: either before S, between S and T , or after T .

We already have notation for two of these cases: U ~× (S �T) and (S �T)~×U . Let

us see what the property requirements are for these products.

Firstly, for U~×(S�T) to be monotonic we need U and S�T to be monotonic, and

either C(U) or K(S �T). But we can only have K(S �T) if copy(S) has the K property.

From 6.11 and 6.12 it is clear that S has to be trivial in order to have K(copy(S)): if

6. MODELLING NETWORK PARTITIONS 117

it is a semigroup transform then S can only have one element, and if it is an order

transform then it can consist of only one equivalence class. In both cases, there is

no possibility of S influencing route choice. We can therefore discard K(S � T) as

a design goal: the only interesting way to achieve monotonicity for U ~× (S � T) is

to have C(U). For this case, we need U to have both the M and C properties, and

at the same time each of S and T must have the M property. See Example 6.4 for a

discussion of an algebra following this pattern.

Alternatively, consider the product (S � T) ~×U . If we want S � T to have the C

property, then replace(T) must also have C. But this is only the case if T is trivial,

as in the previous argument. So as before, we only have one interesting case: S, T

and U are all monotonic, and U has the K property. Note that this is a significant

restriction on any algebra which occurs in the final end-to-end position. While it

might be tempting to add some kind of end-to-end distance as a final tiebreaker, the

property analysis shows that this will lead to a loss of monotonicity, and hence to an

inability of standard algorithms to find global optima.

For the increasing property, we have

I(U ~× (S �T)) ⇐⇒ I(U)∨ (ND(U)∧ I(S)∧ I(T)).

An important consequence of this rule is that if U is increasing, then S � T need

not be increasing nor even nondecreasing. It is therefore possible to use algebras

employing area-based metrics in comparative freedom, if they are preceded in a lex-

icographic order by an increasing U . This fact is already implied by Theorem 5.7, but

it is worth emphasizing in order to show the variety of algebraic combinations that

are possible. In contrast, the only way for (S �T)~×U to be increasing is when both

S and T are increasing. This also corresponds to a case in Theorem 5.7.

Example 6.4. As shown above, for U ~× (S �T) to be monotonic we need each of S, T

and U to be monotonic, and for U to have the C property. So let these algebras be as

follows:

1. U is (N,t,
{
λy . x + y

∣∣ x ∈N}
).

2. S is (℘R,∩, {λA . A∪ {n} | n ∈ N}), where R is a set of ‘region identifiers’.

3. T is ([0,1],u{
λp . pq

∣∣ q ∈ [0, 1]
}
).

Then M(U ~× (S � T)). This algebra expresses an unusual model of route choice, but

one which nonetheless admits global optima.

6. MODELLING NETWORK PARTITIONS 118

According to this scheme, a route p is better than another route q if

1. the end-to-end distance of p is less than that of q; or

2. the distances are the same, but p passes through a subset of the regions of q;

or

3. they have the same length and pass through the same set of regions, but within

the final region p is more reliable than q.

If p and q have the same end-to-end distance but their region sets are incomparable,

then no decision can be made about which is better.

The design of this algebra exposes an engineering issue for end-to-end attributes.

If such an attribute is to occur first in the order, then the region structure may be of

no use at all in determining the best route. It may be that with this algebra, on a

particular graph, the U distances alone are sufficient for determination of the best

route. Such a design would be inappropriate for the Internet, since there are no

circumstances in which it makes sense to violate each autonomous system’s local

policy on the basis of end-to-end considerations.

In other circumstances a similar design could be more useful. Note that the U al-

gebra allows arc weights to be zero. This fact allows the treatment of U as an override

for the (S �T) path selection process. Suppose that in some graph labelled with this

algebra, all of the U weights are zero, and that the path selection algorithm, work-

ing solely on the basis of (S �T) produces results that for some reason are not those

desired by the operator. Those paths can have their preference altered, by changing

their U weights away from zero. This will permit other paths to be chosen in their

place.

Figure 6.4 shows an example of this kind of manipulation. All U weights are as-

sumed to be zero. The numbers on the internal arcs are the T -weights (probabil-

ities); the pairs on the external arcs are the region identifier to be added, together

with the new probability to be used as a basis for calculation in the destination re-

gion. The path to A chosen by B will be the direct path from region α to region γ,

with weight (0, {α} ,0.99). This is preferred to the longer path through β, with weight

(0,
{
α,β

}
,0.99), because it passes through fewer regions. The low reliability of 0.15

on an arc of the shorter path did not affect the final reliability value for the overall

path, due to the erasure effect of passing from one region to another. So this path

might be of much lower quality than the weight calculation suggests, and the oper-

ator of region γ might want the longer path to be taken instead. This can be done by

6. MODELLING NETWORK PARTITIONS 119

β

α γ

A B

0.95

0.15

0.99

0.99

0.99
?

(α,1.00)

(α,1.00)

(β,1.00)

Figure 6.4 Overriding the area-based route choice with an end-to-end attribute.

altering the U weight on the arc marked with ?, say to a value of 10. This will result

in the longer path being preferred at B, because its U weight is still zero. Note that

the making of this change did not require any alteration in theα region, and that the

existence of global optima is unaffected by the ability to change U weights in this

way.

Of course, there is no guarantee that every possible alternative route choice will

be able to be reached by suitable U manipulation. The algebra nevertheless demon-

strates that some traffic engineering capabilities can be understood by incorporating

suitable additional components (U) into a pre-existing algebra (S �T), and that this

does not impair our ability to determine correctness properties.

So far, we have seen several ways in which end-to-end attributes can be incor-

porated into an area-based routing scheme, while still being assured that a globally

optimal path assignment can be found.

• An attribute that is used as a final tiebreaker, after the external and internal

metrics have failed to produce a definitive route selection, can only be an al-

gebra with the K property. In the case of a semigroup transform, this means

that every function must be a constant function κx for some x. Tiebreaking

can therefore only be performed on the basis of the final arc in the path: no

other data can contribute to this choice. For order transforms, the situation is

similar: the image of every function must be a set of elements that are all equi-

valent to one another, so again it is only the final arc which determines the

6. MODELLING NETWORK PARTITIONS 120

ultimate preference of the path. (If both the external and internal attributes

are increasing, then any choice of attribute for the final tiebreaker is sufficient

for local optima to be found.)

• An attribute in the initial position, considered before any external or internal

attributes, must have the C property. This is the case for a wide variety of al-

gebras, as demonstrated elsewhere in this thesis. This kind of design is alien to

the current model of interdomain routing, but may have applications in other

areas.

• Other schemes are possible only if either the internal or external attributes

have no effect on route selection. These cases are degenerate, since they re-

duce to simple lexicographic products for which the relevant deduction rules

are already known.

Another possibility is for end-to-end attributes to be considered after the external at-

tributes, but before the internal attributes. This may be a closer fit for future changes

to the Internet’s interdomain routing scheme, since end-to-end data cannot override

autonomous system policy (part of the external attributes) but still has the potential

to have non-trivial effects on route choice (as is not the case for end-to-end attrib-

utes in the final tiebreaker position). The next two examples demonstrate this kind

of scheme.

An algebraic description of an area-based system with intermediate end-to-end

attributes is (
S ~×T ~× replace(U)

)] (
copy(S)~×T ~×U

)
where S is the external (inter-area) algebra, U is the internal (intra-area) algebra, and

T is the end-to-end algebra. A similar analysis to that of Theorem 6.1 shows that this

product is monotonic if and only if all three of S, T and U are monotonic, and in

addition one of the following conditions holds:

1. C(S)∧C(T)

2. C(S)∧ K(U)

3. K(T)∧C(T)

4. K(T)∧ K(U).

The third of these is equivalent to T being trivial, and therefore can be ignored. We

are left with precisely the same requirements as for the triple lexicographic product

S ~×T ~×U (see Theorem 5.6 and Example 5.8).

6. MODELLING NETWORK PARTITIONS 121

Example 6.5. The most interesting case is when C(S) and C(T), because the K prop-

erty is so restrictive. A concrete example might be the following, for order trans-

forms.

• Let S consist of lists of AS numbers (say), ordered by length. The set of func-

tions F consists of functions of the form λ` . n : `, where n is an AS number

and (:) adds a new element to the beginning of a list.

• Let T be the end-to-end delay algebra (N,≤,
{
λx . x + y

∣∣ y ∈N}
).

• The U algebra can now be any monotonic algebra at all. Let it be

(R∞
≥0,≥,

{
λx . x t y

∣∣ y ∈R≥0
}
)× ([0,1],≥,

{
λp . pq

∣∣ q ∈ [0,1]
}
)

the direct product of bandwidth and reliability.

This can be verified to be monotonic and therefore a globally optimal path assign-

ment can always be found.

Suppose that we only want the algebra(
S ~×T ~× replace(U)

)] (
copy(S)~×T ~×U

)
to be increasing. As before, the property rules for (]), (~×), copy and replace can be

expanded to yield only two cases in which the component algebras are nontrivial.

These are:

1. I(S)∧ND(T)∧ I(U)

2. ND(S)∧ I(T).

Compare this to the rule for scoped product in Theorem 6.2. There, both the interior

and exterior attributes were required to be increasing in order for the entire product

to be increasing. We now see two ways of incorporating intermediate end-to-end

attributes into such a scheme. Firstly, any nondecreasing algebra can be inserted

between the exterior and interior parts of the algebra, and no other changes need to

be made. Secondly, if the inserted algebra is not just nondecreasing but increasing,

then it is sufficient for S to be merely nondecreasing, and for U to be any algebra at

all. Local optima can still be found in this case, even though neither the exterior nor

the interior algebra is increasing.

There is a common pattern between this rule and that of Example 6.5. In both

cases, the insertion of an intermediate end-to-end algebra into a scoped product

6. MODELLING NETWORK PARTITIONS 122

resulted in a change in the property deduction rules. In both cases, the new rule

reflects the rule for lexicographic products: recall that S ~×T ~×U is increasing if S

is nondecreasing and T is increasing. In the previous example, this was problem-

atic since the lexicographic product monotonicity rule is more restrictive than the

scoped product monotonicity rule. But in this example, the rule for the lexicographic

product is less restrictive, and the new case that is revealed allows the design of a

new family of algebras with components whose properties are less strong than in

the standard scoped product case.

Example 6.6. For concreteness, suppose that T is the increasing algebra

(N,≤,
{
λx . x + y

∣∣ y ∈N\ {0}
}
).

Then the exterior algebra S could be anything that is nondecreasing, such as

(℘R,¹S , {λA . A∪ {r} | r ∈ R})

where R is a set of region identifiers and A ¹S B if and only if |A| ≤ |B|. The interior

algebra U could be any algebra at all, such as

(℘N,¹U ,
{
λA . f (A)

∣∣ f :N−→N
}
)

where A ¹U B if and only if min(A) ≤ min(B). This U algebra would ordinarily not be

usable for finding optima at all, since it is neither monotonic nor increasing.

• If f is λx . (x +3) mod 5, A is {1} and B is {2,3} then we have A ¹U B since

min(A) < min(B). But f (A) is {4} and f (B) is {0,1}, so f (B) ≺U f (A). Con-

sequently U is not monotonic.

• If f is λx . (10−x)u0 and A is {7} then f (A) ≺U A, so U is not increasing (nor

even nondecreasing).

The full product will nevertheless be increasing, allowing the computation of local

optima by standard methods. This example demonstrates that even very unusual

algebras can be used in route finding, so long as they appear in a suitable context.

Here, the U algebra which allows any function to N to be an arc label is used as a

region-internal metric, and is used subject to the shortest-distance algebra T . At the

same time, use of S as an external algebra would not normally be acceptable since it

is not increasing; but the presence of T allows that constraint to be relaxed.

6. MODELLING NETWORK PARTITIONS 123

6.4 The road away from BGP

We have now seen several designs that explore different aspects of how an interdo-

main routing protocol might arrive at its choice of best routes. In Section 6.2 it was

argued that in today’s Internet, and any system resembling it, we should not expect

to be able to find globally optimal path assignments. Instead, we should concentrate

our design efforts towards finding useful routing schemes that admit the possibility

of finding local optima, or Nash equilibria. In terms of metarouting, this means the

search for algebras having the increasing property, and whose design reflects the

engineering desires of network operators. This second design goal is, as has been

noted in Chapter 2, inherently not well-defined and probably can never be formally

defined. Nonetheless, in this section several suggestions will be put forward about

the design of any future routing protocol that is similar in spirit to BGP, but offers

more capabilities and is demonstrably correct.

The following changes may be considered ‘safe’ in that they are slightly different

from what is done today, but have the correct algebraic properties for the entire rout-

ing scheme to possess local optima. They can therefore be seen as the low-hanging

fruit for adaptations of BGP.

The autonomous system path could be enriched by accompanying each AS num-

ber with a numeric weight. The cost of the path would then be the sum of these

weights. This would subsume the current use of padding, while allowing more nu-

ance in the path selection process. Poisoning could be implemented by adding an

AS number with zero weight; this would prevent the route from being taken at the

remote AS, but would not otherwise affect the weight. The AS numbers themselves

remain present for transparency and loop-avoidance purposes, but otherwise are

not needed. This change adds more capability to the AS_PATH attribute, is neutral

with respect to convergence properties, and tidies up some uses of the attribute (like

padding and poisoning) which make its semantics unclear. It comes at a cost of in-

creased processing time and greater storage requirements, though this may be mit-

igated by choosing an alternative representation or implementing loop-avoidance

differently. For example, it would be possible to store only the total weight in addi-

tion to the set of ASes on a path, rather than storing a list of pairs of an AS number

and a weight.

Confederations and sub-ASes should be arbitrarily nestable. One precondition

for this would be to disentangle the confederation path from the inter-AS path; cur-

rently, these are both present within the AS_PATH attribute. (This is an implement-

6. MODELLING NETWORK PARTITIONS 124

ation accident resulting from the desire to reuse AS_PATH behaviour for a then-new

BGP feature, confederations.) Confederation information, which is conceptually

separate and part of the internal detail of how a particular AS operates, should not be

externally visible. This change would also allow a variety of algebras to be involved

with the selection of the inter-confederation path; this could use the same mechan-

ism as proposed in the previous point, but if the paths are separate there is no com-

pulsion to use the same algebra. Associating all confederation-related data together

permits arbitrary levels of nesting, without having to alter the AS_PATH description

any further. It also allows easier interoperation with route reflectors. Furthermore,

the data can be isolated from the outside world, with benefits for stability and secur-

ity.

An end-to-end attribute or set of attributes could be introduced at an appropri-

ate point in the path selection process. The previous section identified several pos-

sible points with associated design tradeoffs for the correctness properties which

would be required.

BGP communities provide a general mechanism for various aspects of routing

protocol control not otherwise represented in the standard (Traina, Chandrasekeran

and Li 1996). Communities are numeric tags which can be attached to route data,

and which may cause recipients to take some action—whether to do something, or

what to do, is entirely up to the recipient. In terms of BGP semantics, communities

represent a source of mysterious and potentially dangerous behaviour, because their

effect is so unconstrained. They therefore do not fit in well to the algebraic viewpoint.

It is possible to identify some ways in which the community model might be made

more susceptible to algebraic analysis, but a great deal of further effort would be

required to complete these proposals and carry out the necessary theory.

125

Chapter 7

Conclusion

This thesis has presented a comprehensive account of several new results in algeb-

raic routing. The theorems that have been proved give complete criteria for the pres-

ence or absence of important properties in algebraic constructions, and also extend

the scope within which locally optimal solutions are known to be found. The wider

project of this work has been to test the extent to which the algebraic routing model

is feasible in understanding the routing problem. To that end, many examples have

been explored which go beyond those typically considered in the field: not just to

exercise corner cases of the algebra, but also to approach routing problems which

are known to be difficult, such as the analysis of network areas. Connections have

also been made to pre-existing mathematical theory, such as with the distributive

lattices of Section 3.1.

The separation between algebra and algorithm has been an important philo-

sophical driver behind the methods used here. The relationship between pathfind-

ing and linear algebra is fundamental, and preserving this relationship while tackling

new problems is worthwhile. The linear algebra expresses the essence of what hap-

pens in the finding of a routing solution, even in the case of non-distributive algebra.

Being clear about this fact not only makes a large amount of theory available, but

also aids our perception of the problem. It is not obvious how the algorithm design

process can take place without an understanding of the problem that an algorithm

is attempting to solve.

As such, in this thesis the algorithms have been kept pure and generic, and all de-

tails of a particular route-finding problem are part of the algebra. This includes the

avoidance of loops which is necessary for convergence in some cases. It is true that

for any particular instantiation of an algorithm with an algebra, there may be many

ways of achieving the same result without maintaining the separation. This possibil-

ity only reinforces the importance of the separation, because that kind of alternative

design should be considered in precisely this way: an optimization specific to the cir-

7. CONCLUSION 126

cumstances, whose correctness depends upon the known correctness of the generic

solution.

The same argument can in principle be applied to concerns relating to distrib-

uted algorithms, where the connection with matrix multiplication is not so obvious.

This thesis has not attempted to provide a formal translation between a centralized

and a distributed algorithm. Nevertheless, given what has been done, it is plausible

that the right way to think about distributed pathfinding is by treating the generic

algebra-algorithm combination as the standard of measurement, and proving cor-

rectness in relation to that. More research is needed before this conclusion can be

truly supported.

Several other areas for further work have already been identified. The analysis of

properties and operators is clearly not complete: the work that has been done in this

thesis does not represent, nor is it intended to represent, a definitive account of an

algebraic metalanguage. There is considerable scope not only for further mathemat-

ical work on the underlying theory, but also for development of a metalanguage as an

object in itself. This would include the writing of a formal syntax and semantics for

the language, and accompanying analysis of its expressive power and applications.

It may also involve some research on human factors, in the case of a metalanguage

intended to be employed by network operators as part of a routing system.

In order for that to be done, we must thoroughly investigate the notion of express-

ive power of a language. The language design in the present thesis has been motiv-

ated by its ability to cover examples that we recognize as being important, while

retaining the possibility of full property inference in all cases. We do not yet have

a theory of how different metalanguages—with different base cases, operators and

properties—might allow different algebraic structures to be defined and analyzed.

The work that has been done on the algebraic theory still suffers from several

weaknesses. The theory that has been used throughout this thesis has not been de-

scribed in a way that would be expected for someone familiar with standard abstract

algebra. In particular, we lack a comprehensive structure theory that is explained

in terms of familiar algebraic concepts (homomorphisms, ideals, varieties, and the

like). It may be that such a treatment would reveal patterns for property deduction

which so far have remained elusive. Similar remarks apply to the treatment of prop-

erties as logical propositions, which in this thesis has been informal but could bene-

fit from a more complete study.

The lexicographic product has been given a thorough treatment, but one area

that is lacking is a fully abstract definition of what the product really is. Such a

7. CONCLUSION 127

description would probably involve the use of category theory, expressing a lexico-

graphic product as some kind of universal object in a category with particular char-

acteristics. This kind of definition would allow a deeper unification of the order-

theoretic and semigroup-theoretic products, as well as possibly suggesting other in-

stances of the same pattern.

In the analysis of deduction rules for the various properties and operators, some

repeated patterns can be seen in the rule structure. For example, the monotonicity of

the lexicographic product depends on each component being monotonic, and there

is an additional constraint on either the first or the second operand. In the same way,

the existence of the order-theoretic lexicographic product depends on either the first

operand being a linear order, or the second operand having a greatest element. In

both cases, there is a pattern of the desired result being achievable as a result of a

property on one or the other component.

This suggests that it should be possible to develop higher-level theorems about

property deduction rules in some cases. It could be that such theorems would reveal

the logical structure behind these rules, and their relationship to the definition of

the product. These higher-level proof strategies could enable us to find new rules

more easily: perhaps, given the definition of the lexicographic product and of the

monotonicity property, there is a theorem which says that there must be properties

P and Q such that

M(S ~×T) ⇐⇒ M(S)∧M(T)∧ (P(S)∨Q(T))

and even some information about what they might be.

Regarding convergence proofs, the work in Chapter 4 has extended our know-

ledge of which properties are required in different scenarios, but does not encom-

pass the most difficult case. This is the question of what is required for convergence

in the case of an algebra which is not monotonic (or distributive), is not selective,

and is not an algebra of minimal sets over another algebra which is selective. Ex-

amples of such algebras include some which are related to path counting, as well as

those related to the k-shortest paths problem. Because of the importance of these

problems, it would certainly be desirable to know what the required properties for

convergence are. It is likely that a proof for these cases would itself be of interest for

the structure of the underlying combinatorial problem, just as the existing proofs for

the selective nondistributive case relate to the selective version of the Stable Paths

Problem. The ultrametric-based approach of Section 4.2 may be promising for this

more general case.

7. CONCLUSION 128

In addition, all current convergence proofs assume that paths with loops are in-

valid, but it may be possible to still achieve convergence in the presence of a weaker

guarantee, such as an upper bound on the permitted number of loops. It should be

noted in this connection that we do not have any applications for which this is the

case, though some may be found which are unrelated to network routing.

Alongside the correctness issue are the related problems of algorithmic complex-

ity and performance. It seems plausible that there should be a direct relationship

between the properties of an algebra and the asymptotic complexity of finding a

path assignment for a graph parametrized over that algebra. In particular, we might

expect that monotonic algebras have more favourable performance characteristics

than those which are not monotonic. There are some algebras which are ‘almost

monotonic’ in the sense that some but not all triples of elements exhibit monoton-

icity; perhaps it is possible to quantify the degree of near-monotonicity of an algebra

and relate this to algorithmic performance. At the same time, we know of several

optimized forms of Dijkstra’s algorithm, for example, which are applicable to mono-

tonic algebras which have several additional algebraic properties (such as the pos-

sibility of subtraction, possessing an upper bound, and so on). It should be possible

not only to derive deduction rules for these properties, but also relate them to the

algorithmic improvements which they permit.

In terms of applications, there are many aspects of routing protocol behaviour

which are not well covered by the present algebraic model. These include unusual

features of current protocols, such as BGP communities, but mainly involve aspects

of routing unconnected with the path selection process: naming, addressing, for-

warding, and asynchronicity. Some of these may be more susceptible than others

to algebraic treatment, and some have already been considered in this way by oth-

ers. The extensions to ‘traditional’ route-finding algebra which have been presented

in this thesis already demonstrate that the scope of the theory is wider than might

have been supposed. It is plausible that this is also true in relation to these other

problems.

Generic pathfinding is not only applicable to the Internet. Other areas in which it

has been used include circuit layout; road and rail navigation; planning, scheduling

and resource allocation; dataflow analysis of computer programs; and algorithmic

problems related to automata, including string matching. It would be interesting to

see to what extent the metarouting approach can contribute to these areas of study,

and vice versa.

129

Appendix A

Extended proofs

A.1 Convergence

Proof of Lemma 4.1. The relation is obviously reflexive. For the remaining properties

of a partial order, we will show that if T is linear, but (v) fails to be transitive or

antisymmetric, then S must contain an infinite descending chain.

For the antisymmetry axiom, suppose that f v g and g v f . If f (s) = g (s) for

all s then f = g . So suppose, without loss of generality, that f (s0) <T g (s0) for some

s0 in S. Because g v f , there exists some s1 <S s0 with g (s1) <T f (s1). But f v g as

well, so then there must also be s2 <S s1 with f (s2) <T g (s2). This construction can

be repeated: we find an infinite descending chain

s0 >S s1 >S s2 >S s3 >S · · ·

which cannot be the case if S is well-founded. Hence (v) must be antisymmetric.

The argument for transitivity is similar. Suppose that f v g , g v h, and h(s0) <T

f (s0) for some s0 in S. Towards a contradiction, assume that h(s) ≤T f (s) whenever

s <S s0. By linearity of T , either g (s0) <T f (s0) or f (s0) ≤T g (s0).

• If g (s0) <T f (s0) then there exists s1 <S s0 with f (s1) <T g (s1), since f v g .

Therefore h(s1) <T g (s1), by assumption. But g v h, so there exists s2 <S s1

with g (s2) <T h(s2); and g (s2) <T f (s2). We again obtain an infinite descending

chain by reapplying the construction.

• If f (s0) ≤T g (s0) then h(s0) <T g (s0). Since g v h, there exists an s1 <S s0 with

g (s1) <T h(s1). By assumption, g (s1) <T f (s1); and since f v g , there exists

s2 <S s1 with f (s2) <T g (s2). The assumption again yields h(s2) <T g (s2). Once

more we find an infinite descending chain.

Therefore the assumption cannot hold: there must be some s <S s0 with f (s) <T h(s).

This means that f v h.

A. EXTENDED PROOFS 130

A.2 Basic properties for the lexicographic product

In this section, we first prove deduction rules for the fundamental properties of com-

mutativity, idempotence, and selectivity. The bulk of this section is however devoted

to detailed proofs for the monotonicity and increasing properties, for both the order-

theoretic lexicographic product and the monoidal version.

Proof of 5.7 and 5.8. Let (S,⊕S) and (T,⊕T) be semigroups, where either S is selective

or T has an identity. These conditions guarantee that their lexicographic product

(S ~×T,⊕) exists.

We will prove that S and T are semilattices if and only if (S ~×T,⊕) is a semilattice.

First, suppose that S and T are both commutative and idempotent. Consider the

two expressions

c1 = (s1, t1)⊕ (s2, t2)

c2 = (s2, t2)⊕ (s1, t1)

in S ~×T . Their first components are equal, since S is commutative. So s1 = s1 ⊕S s2

if and only if s1 = s2 ⊕S s1, and likewise for s2. It follows that the second components

of c1 and c2 must be equal, by definition of the lexicographic product. Also, if s1 = s2

and t1 = t2 then we obtain

(s1, t1)⊕ (s1, t1) = (s1 ⊕S s1, t1 ⊕T t1) = (s1, t1). (A.1)

Thus S ~×T is commutative and idempotent.

Now, suppose that S ~×T is a semilattice. Then S and T must both be idempotent,

by A.1. Because c1 = c2 for all choices of elements from S and T , it must be that S

is commutative (since their first components have to be equal). If s1 = s2 then the

second components of c1 and c2 are t1⊕T t2 and t2⊕T t1 respectively; since these are

known to be equal, T has to be commutative.

Proof of 5.9. Let S and T be as in the previous proof.

If both are selective then S ~×T is selective. By examination of Definition 5.1, it is

enough to prove that if s1 = s1 ⊕S s2 = s2, then

(s1 ⊕S s2, t1 ⊕T t2) ∈ {(s1, t1), (s2, t2)} .

This follows immediately from selectivity of T .

If S ~×T is selective then S and T are selective. Let t1 and t2 be two elements of T ,

neither of which is an identity for (⊕T). (If no two such elements can be found, then

T is trivial and therefore selective in any case.)

A. EXTENDED PROOFS 131

For any s1 and s2, if s1 ⊕S s2 is equal to neither s1 nor s2 then

(s1, t1)⊕ (s2, t2) = (s1 ⊕S s2,αT).

But if neither t1 nor t2 is αT , then S ~×T cannot be selective. So s1⊕S s2 must be equal

to at least one of s1 and s2; in other words, S is selective.

If S is selective then it is idempotent. So

(s, t1)⊕ (s, t2) = (s ⊕S s, t1 ⊕T t2) = (s, t1 ⊕T t2).

If S ~×T is to be selective then t1 ⊕T t2 must be equal to t1 or t2, or both. Therefore T

is also selective.

A.3 Properties for global optima

The results of this section establish Theorem 5.4 for all four algebraic structures. We

first prove the theorem for order semigroups and order transforms, and then for

bisemigroups and semigroup transforms.

Proof of Theorem 5.4 for order semigroups and order transforms. For all order trans-

forms S and T , we have

M(S ~×T) =⇒ M(S)∧M(T)

M(S ~×T)∧¬C(S) =⇒ K(T)

M(S ~×T)∧¬K(T) =⇒ C(S)

M(S)∧M(T)∧ (C(S)∨ K(T)) =⇒ M(S ~×T)

by the lemmas (A.1, A.2, A.3, and A.4). Consequently,

M(S ~×T) ⇐⇒ M(S)∧M(T)∧ (C(S)∨ K(T)) .

Since this statement holds for all order transforms, the corresponding statement is

true for order semigroups, because we can construct an order transform (A,≤A,FA)

from any order semigroup (A,≤A,⊗A), where

FA = {
λx . y ⊗A x

∣∣ y ∈ A
}

,

and the properties carry across.

A. EXTENDED PROOFS 132

Proof of Theorem 5.4 for bisemigroups and semigroup transforms. The proof has the

same structure as the previous proof, but relies instead on the lemmas A.5, A.6, A.7

and A.8. The same technique carries the semigroup transform proof over into the

bisemigroup proof.

In the following lemmas, let (S,¹S ,F) and (T,¹T ,G) be order transforms, with

their lexicographic product being (S ×T,¹,F ×G).

Lemma A.1. If M(S ~×T) then M(S) and M(T).

Proof. Suppose that M(S ~×T). Then for all (s1, t1) and (s2, t2) in S ×T and all (f , g) in

F ×G we have

(s1, t1) ¹ (s2, t2) =⇒ (f (s1), g (t1)) ¹ (f (s2), g (t2)).

Choose t1 = t2, and note that then g (t1) = g (t2) for any g . From the definition of the

lexicographic product,

s1 ¹S s2 ⇐⇒ (s1, t1) ¹ (s2, t1)

and

f (s1) ¹S f (s2) ⇐⇒ (f (s1), g (t1)) ¹ (f (s2), g (t2))

and so M(S) is true.

Likewise, set s1 = s2, and choose any f to deduce M(T).

Lemma A.2. If M(S ~×T) and ¬C(S) then K(T).

Proof. Suppose that C does not hold for S, and that S ~×T is monotonic. Then there

exist s1 and s2 in S, and f in F , so that s1 ≺S s2 and f (s1) ∼S f (s2). Since s1 ≺S s2, we

have

(s1, t1) ≺ (s2, t2)

for all t1 and t2 in T . The product S ~×T is monotonic, so

(f (s1), g (t1)) ¹ (f (s2), g (t2))

for any g in T ; and because f (s1) ∼S f (s2), it must be the case that g (t1) ¹T g (t2).

This is true for any t1 and t2, so we have K(T): for all t1, t2 and g , g (t1) ∼T g (t2).

Lemma A.3. If M(S ~×T) and ¬K(T) then C(S).

Proof. Suppose that ¬K(T) and M(S ~×T). Then there exist t1 and t2 in T , and g in

G , such that g (t1) and g (t2) are strictly ordered or incomparable. Therefore, either

A. EXTENDED PROOFS 133

¬(g (t1) ¹T g (t2)) or ¬(g (t2) ¹T g (t1)). Without loss of generality assume it is the

former.

If s1 ≺S s2, then (s1, t1) ¹ (s2, t2), by definition of the lexicographic product. Since

S ~×T is monotonic, for all f in F and g in G ,

f (s1) ≺S f (s2)

∨(f (s1) ∼S f (s2)∧ g (t1) ¹ g (t2)).

But g (t1) ¹ g (t2) is false. Hence s1 ≺S s2 implies f (s1) ≺S f (s2), and similarly s2 ≺S s1

implies f (s2) ≺S f (s1).

Therefore, if f (s1) and f (s2) are equivalent, then it cannot be that s1 ≺S s2 or s2 ≺S

s1. Since s1 and s2 cannot be strictly ordered in this case, they must be equivalent or

incomparable. This proves C(S).

Lemma A.4. If M(S), M(T), and either C(S) or K(T), then M(S ~×T).

Proof. Suppose that (s1, t1) ¹ (s2, t2). Then either s1 ≺S s2, or s1 ∼S s2 and t1 ¹T t2.

Hence s1 ¹S s2, and by monotonicity of S we have f (s1) ¹S f (s2) for any f in F .

If f (s1) ≺S f (s2) then there is nothing more to prove, so consider the case when

f (s2) ∼S f (s1).

If K(T), then g (t1) and g (t2) are equivalent for any g in G . Consequently,

(f (s1), g (t1)) ¹ (f (s2), g (t2))

which makes S ~×T monotonic.

However, if C(S) is true, then s1 ∼S s2 (or s1 #S s2, but this cannot be the case

because we already know that s1 ¹S s2). Hence t1 ¹T t2, and since T is monotonoc

we have g (t1) ¹T g (t2) for any g in G . By definition of the lexicographic product,

(f (s1), g (t1)) ¹ (f (s2), g (t2)). So in this case, S ~×T is also monotonic.

In the following lemmas, let (S,⊕S ,F) and (T,⊕T ,G) be semigroup transforms,

with their lexicographic product being (S ×T,⊕,F ×G).

Lemma A.5. If M(S ~×T) then M(S) and M(T).

Proof. Suppose that for all s1 and s2 in S, t1 and t2 in T , f in F and g in G ,

(f , g) ((s1, t1)⊕ (s2, t2)) = (f , g)(s1, t1)⊕ (f , g)(s2, t2).

The first component of the left expression is f (s1 ⊕S s2) and the first component of

the right expression is f (s1)⊕S f (s2), and these are equal for all elements of S and F .

Therefore S is monotonic.

A. EXTENDED PROOFS 134

Let s1 = s2; note that f (s1), f (s2), f (s1)⊕S f (s2) and f (s1 ⊕S s2) are all equal. Then

the second component of the left expression above is g (t1 ⊕T t2), and the second

component of the right expression is g (t1)⊕T g (t2). Therefore T is also monotonic.

Lemma A.6. If M(S ~×T) and ¬C(S) then K(T).

Proof. Suppose that S ~×T is monotonic but S does not have C. Then there exist s1

and s2 in S, and f in F , such that f (s1) = f (s2) but s1 6= s2. By Lemma A.5, f (s1⊕S s2) =
f (s1)⊕S f (s2), and this must be equal to f (s1) by idempotence of S. Hence

(f , g)(s1, t1)⊕ (f , g)(s2, t2) = (f (s1), g (t1 ⊕T t2))

for all t1 and t2 in T and g in G , and by monotonicity of S ~×T this is equal to

(f , g) ((s1, t1)⊕ (s2, t2)) .

The T component of this expression depends on the values of s1 and s2: by definition

of (⊕), it will be either g (t1), g (t2), or g (αT). (It cannot be g (t1 ⊕T t2), since s1 and s2

are different.) We therefore have one of the following:

1. ∀t1, t2 : g (t1 ⊕T t2) = g (t1),

2. ∀t1, t2 : g (t1 ⊕T t2) = g (t2), or

3. ∀t1, t2 : g (t1 ⊕T t2) = g (αT).

If the first case holds, set t1 =αT to obtain

∀t2 : g (t2) = g (αT).

Similarly, if the second or third case holds, set t2 =αT to obtain

∀t1 : g (t1) = g (αT).

From either of these, it follows that g (t1) = g (t2) for all t1 and t2. This is the statement

of K(T).

Lemma A.7. If M(S ~×T) and ¬K(T) then C(S).

Proof. Suppose that S ~×T is monotonic but K(T) is false. Then there are t1 and t2

in T , and g in G , for which g (t1) and g (t2) are different (and so t1 and t2 are also

different). Therefore g (t1)⊕T g (t2) must be different from at least one of g (t1) and

A. EXTENDED PROOFS 135

g (t2). Without loss of generality, assume that g (t1) 6= g (t1)⊕T g (t2). Note that it must

also be the case that g (∞T) 6= g (t1)⊕T g (t2), since otherwise g (t1) and g (t2) would

both have to be equal to g (∞T).

Suppose that f (s1) = f (s2) for some s1 and s2 in S and f in F ; it must be shown

that s1 = s2. So assume towards a contradiction that s1 and s2 are not equal. Note

that f (s1 ⊕S s2) and f (s1)⊕S f (s2) are also equal to f (s1). Then

(f , g)(s1, t1)⊕ (f , g)(s2, t2) = (f (s1), g (t1)⊕T g (t2))

and by monotonicity of S ~×T , this is equal to

(f , g) ((s1, t1)⊕ (s2, t2)) = (f (s1), g (t))

where

t =


t1 s1 = s1 ⊕S s2 6= s2

t2 s1 6= s1 ⊕S s2 = s2

∞T s1 6= s1 ⊕S s2 6= s2.

Therefore g (t1)⊕T g (t2) must be equal to g (t). We have already shown that g (t1)⊕T

g (t2) is not equal to either g (t1) or g (∞T). Hence g (t) must be equal to g (t2).

It follows that s1 6= s1⊕S s2 = s2, in order for this case to emerge. But s1 and s2 could

be exchanged in this argument to yield s2 6= s2 ⊕S s1 = s1; this gives a contradiction.

So s1 = s2 after all, which proves that S has the C property.

Lemma A.8. If M(S), M(T), and either C(S) or K(T), then M(S ~×T).

Proof. Suppose that M(S), M(T) and C(S). Write

L = (f , g) ((s1, t1)⊕ (s2, t2))

R = (f , g)(s1, t1)⊕ (f , g)(s2, t2).

For s1 and s2 in S, there are four cases:

1. s1 = s2. Then L is equal to (f (s1 ⊕S s2), g (t1 ⊕T t2)). Now, if s1 = s2 then f (s1) =
f (s2), and by idempotence this is equal to f (s1 ⊕S s2) as well. Then R is equal

to (f (s1)⊕S f (s2), g (t1)⊕T g (t2)), and by monotonicity of S and T this is equal

to L. Therefore S ~×T is monotonic

2. s1 = s1 ⊕S s2 6= s2. Then L is equal to (f (s1), g (t1)). Since s1 6= s2 and C(S), we

know that f (s1) 6= f (s2); and by monotonicity of S, f (s1) = f (s1⊕S s2) = f (s1)⊕S

f (s2). Therefore R = (f (s1), g (t1)) = L, and S ~×T is monotonic

A. EXTENDED PROOFS 136

3. s1 6= s1 ⊕ s2 = s2. This is symmetrical with the previous case.

4. s1 6= s1 ⊕ s2 6= s2. By the C property of S, we have f (s1) 6= f (s1 ⊕S s2) 6= f (s2) also.

Then L = (f (s1 ⊕ s2), g (∞T)) and R = (f (s1)⊕ f (s2),∞T), and these are equal.

(Recall that g (∞T) =∞T is an axiom for semigroup transforms.) Hence S ~×T

is monotonic

Now suppose that instead of C(S) we have K(T). Then L = (f (s1 ⊕S s2),∞T) since

g applied to anything yields the same as g applied to ∞T , namely ∞T . Also, R =
(f (s1)⊕S f (s2),∞T ⊕T ∞T). Clearly L = R by monotonicity of S, and so S ~×T is mono-

tonic as well.

We will now prove property deduction rules for C and K. Theorem 5.5 asserts that

C(S ~×T) ⇐⇒ C(S)∧C(T)

K(S ~×T) ⇐⇒ K(S)∧ K(T)

for S and T being bisemigroups, order semigroups, semigroup transforms or order

transforms. As before, we will prove each of these statements for the semigroup

transforms and for order transforms; from these, the proofs for bisemigroups and

order semigroups follow immediately. This is done in the next four lemmas.

Lemma A.9. If (S,⊕S ,F) and (T,⊕T ,G) are semigroup transforms for which the lexico-

graphic product exists, then C(S ~×T) if and only if C(S)∧C(T).

Proof. The product S ~×T is cancellative if and only if

(f (s1), g (t1)) = (f (s2), g (t2)) =⇒ (s1, t1) = (s2, t2)

for all s1 and s2 in S, t1 and t2 in T , f in F and g in G . It is obvious that this holds

if S and T are individually cancellative. For the other direction, set t1 = t2 in the

implication above to see that S must be cancellative if S ~×T is cancellative; likewise,

set s1 = s2 to obtain the statement of cancellativity of T .

Lemma A.10. If (S,⊕S ,F) and (T,⊕T ,G) are semigroup transforms for which the lex-

icographic product exists, then K(S ~×T) if and only if K(S)∧ K(T).

Proof. We have K(S ~×T) if and only if

(f (s1), g (t1)) = (f (s2), g (t2))

for all s1, s2, t1, t2, f and g . Again, if S and T both have K, then K clearly holds for

their lexicographic product. And if the above statement holds, then setting s1 = s2 or

t1 = t2 will yield K(T) or K(S) respectively.

A. EXTENDED PROOFS 137

Lemma A.11. If (S,¹S ,F) and (T,¹T ,G) are order transforms for which the lexico-

graphic product exists, then C(S ~×T) if and only if C(S)∧C(T).

Proof. The C property holds for S ~×T if and only if

(f (s1), g (t1)) ∼ (f (s2), g (t2)) =⇒ (s1, t1) ∼ (s2, t2)∨ (s1, t1) # (s2, t2)

for all s1, s2, t1, t2, f and g . If C(S) and C(T) both hold, then

(f (s1), g (t1)) ∼ (f (s2), g (t2)) =⇒ f (s1) ∼S f (s2)∧ g (t1)∧ g (t2)

=⇒ (s1 ∼S s2 ∨ s1 #S s2)∧ (t1 ∼T t2 ∨ t1 #T t2)

from which it follows that (s1, t1) and (s2, t2) are either equivalent or incomparable.

This proves C(S ~×T).

For the other direction, setting t1 = t2 in the statement of C(S ~×T) yields C(S) and

setting s1 = s2 yields C(T).

Lemma A.12. If (S,¹S ,F) and (T,¹T ,G) are semigroup transforms for which the lex-

icographic product exists, then K(S ~×T) if and only if K(S)∧ K(T).

Proof. The product S ~×T has the K property if and only if

(f (s1), g (t1)) ∼ (f (s2), g (t2))

which by definition of (∼) for the lexicographic product is equivalent to

(f (s1) ∼S f (s2))∧ (g (t1) ∼T g (t2)).

Hence K(S ~×T) if and only if K(S) and K(T).

A.4 Properties for local optima

Proof of Theorem 5.7. The statements to be proved are

ND(S ~×T) ⇐⇒ I(S)∨ (ND(S)∧ND(T)) (A.2)

I(S ~×T) ⇐⇒ I(S)∨ (ND(S)∧ I(T)) (A.3)

for each of the four standard structures. The following lemmas prove these for semig-

roup transforms and order transforms; the proofs for bisemigroups and order semig-

roups follow from these.

Note that I(S) implies ND(S) in all cases.

A. EXTENDED PROOFS 138

Lemma A.13. Equation A.2 holds for semigroup transforms.

Proof. By definition, ND(S ~×T) if and only if

(s, t) = (s, t)⊕ (f (s), g (t))

= (s ⊕S f (s), t ′)

for all s, t , f and g , where

t ′ =



t ⊕T g (t) if s = s ⊕S f (s) = f (s)

t if s = s ⊕S f (s) 6= f (s)

g (t) if s 6= s ⊕S f (s) = f (s)

αT if s 6= s ⊕S f (s) 6= f (s).

So for this to hold, it must be that s = s ⊕S f (s); and if s = f (s) then it is additionally

required that t = t ⊕T g (t), since otherwise t ′ would not be equal to t . Equally, if this

does hold, then s = s ⊕S f (s) and either s 6= f (s) or t = t ⊕T g (t).

Lemma A.14. Equation A.3 holds for semigroup transforms.

Proof. Following from the previous lemma, the only additional relationships that

needs to be proved are

ND(S)∧ I(T) =⇒ I(S ~×T)

I(S ~×T)∧¬I(S) =⇒ I(T).

If ND(S) and I(T) then we already have ND(S ~×T), and it only remains to show that,

using the same notation as the previous proof, (s, t) must always be different from

(f (s), g (t)). This is the case if T is increasing, as then t and g (t) must be different.

Suppose that S ~×T is increasing but S alone is not. Then there exist f and s with

s = f (s), and yet

(s, t) = (s, t)⊕ (f (s), g (t)) 6= (f (s), g (t)).

Hence it must be that t and g (t) are always different: we have I(T) as required, since

ND(T) follows from the previous lemma.

Lemma A.15. Equation A.2 holds for order transforms.

Proof. The product S ~×T is nondecreasing if

(s, t) ¹ (f (s), g (t))

A. EXTENDED PROOFS 139

always; that is, if

(s ≺S f (s))∨ (s ∼S f (s)∧ t ¹T g (t)).

This can be rewritten as

(s ¹S f (s))∧ (¬(f (s) ¹S s)∨ t ¹T g (t))

This certainly is the case if S is increasing (s ≺S f (s) for all s and f), or if both S and

T are nondecreasing. For the reverse direction, if S ~×T is nondecreasing then S is

nondecreasing; and if S is not strictly increasing, then it must be that t ¹T g (t), so

that T is nondecreasing.

Lemma A.16. Equation A.3 holds for order transforms.

Proof. It remains to be shown that if S is nondecreasing and T is increasing, then

S ~×T is increasing; and if S ~×T is increasing but S is not, then T must be increasing.

For the first of these, if s ¹S f (s) and t ≺T g (t) always, then

(s ≺S f (s))∨ (s ∼S f (s)∧ t ≺T g (t))

which is the statement of S ~×T being increasing.

For the second, S and T have already been shown to be nondecreasing; so if

(s, t) ≺ (f (s), g (t)) but s ∼S f (s) it must be the case that t ≺T g (t).

We will prove Theorem 5.7 in the case of semigroup transforms. The bisemigroup

proof follows directly from this. Likewise, the proof for order transforms subsumes

the proof for order semigroups. The proofs for the ND and I properties are done

separately.

In the following, let (S,⊕S ,F) and (T,⊕T ,G) be semigroup transforms with their

lexicographic product being (S ×T,⊕,F ×G).

Proof of Theorem 5.7(1) for semigroup transforms. The product S ~×T is nondecreas-

ing if and only if

(s, t) = (s, t)⊕ (f (s), g (t))

for all s in S, t in T , f in F and g in G . By definition of (⊕), this is equivalent to the

statement that

(s, t) =



(s ⊕S f (s), t ⊕T g (t)) s = s ⊕S f (s) = f (s)

(s ⊕S f (s), t) s = s ⊕S f (s) 6= f (s)

(s ⊕S f (s), g (t)) s 6= s ⊕S f (s) = f (s)

(s ⊕S f (s),∞T) s 6= s ⊕S f (s) 6= f (s).

A. EXTENDED PROOFS 140

Now, it is clear that this holds if and only if s = s⊕S f (s) for all s and f , since otherwise

the S components of the expressions will not be equal. (Note that this condition is

ND(S).) So the statement can be simplified further to

(s, t) =
(s ⊕S f (s), t ⊕T g (t)) s = f (s)

(s ⊕S f (s), t) s 6= f (s).

This is true in all cases if and only if t = t⊕T g (t) for all t and g , or s 6= f (s) for all s and

f . Since ND(S) is already known to hold, the conjunction of that with the condition

that s 6= f (s) yields I(S).

Therefore ND(S ~×T) if and only if

1. I(S), or

2. ND(S) and ND(T),

as required.

Proof of Theorem 5.7(2) for semigroup transforms. If I(S ~×T) then ND(S ~×T), and by

the previous proof we already then have either I(S) or ND(S)∧ ND(T). It remains to

be shown that

1. I(S ~×T)∧¬I(S) =⇒ I(T)

2. I(S) =⇒ I(S ~×T)

3. ND(S)∧ I(S) =⇒ I(S ~×T).

These statements will now be proved.

1. Suppose that I(S ~×T) and ¬I(S). Then there exist s in S and f in F such that

s = s ⊕S f (s) = f (s). (Recall that ND(S) is guaranteed.) If I(S ~×T) then for all t

in T and g in G we have

(s, t) = (s, t)⊕ (f (s), g (t)) 6= (f (s), g (t))

If s = f (s) but (s, t) 6= (f (s), g (t)) then t 6= g (t). Since it is already known that T

is nondecreasing, this demonstrates that it must be increasing as well.

2. Suppose that I(S). Then ND(S ~×T) by the proof for ND. It remains to be shown

that (s, t) 6= (f (s), g (t)) for any s, t , f and g . But if S is increasing then we

cannot have s = f (s), so (s, t) can never be equal to (f (s), g (t)).

A. EXTENDED PROOFS 141

3. Similarly, if ND(S) and I(T) then ND(S ~×T), and the fact that T is increasing

means that t and g (t) will never be equal. Therefore, (s, t) and (f (s), g (t)) can-

not be equal, and S ~×T must be increasing.

This completes the proof for the I property.

We will now prove the same theorem for order transforms, and consequently for

order semigroups. Let (S,¹S ,F) and (T,¹T ,G) be order transforms, with their lexico-

graphic product being (S ×T,¹,F ×G).

Proof of Theorem 5.7(1) for order transforms. The product S ~×T is nondecreasing if

(s, t) ¹ (f (s), g (t)) for all s, t , f and g . By definition of the lexicographic product, this

is equivalent to

s ≺S f (s)∨ (
s ∼S f (s)∧ t ¹T g (t)

)
.

Clearly, if s ≺S f (s) is always true then ND(S ~×T). Equally, if s ¹S f (s) and t ¹T g (t)

are always true, then ND(S ~×T) as well.

For the other direction, if ND(S ~×T) then s ≺S f (s) or s ∼S f (s) always; therefore,

s ¹S f (s) for all s and f . So S is nondecreasing. If S happens to be increasing, then

we are done, but if not, it must be that t ¹T g (t) for all t and g . Therefore ND(S ~×T)

implies that either I(S), or ND(S) and ND(T).

Proof of Theorem 5.7(2) for order transforms. As before, it remains to be shown that

1. I(S ~×T)∧¬I(S) =⇒ I(T)

2. I(S) =⇒ I(S ~×T)

3. ND(S)∧ I(S) =⇒ I(S ~×T).

Now, I(S ~×T) if and only if (s, t) ≺ (f (s), g (t)) for all s, t , f and g , which by definition

is equivalent to

s ≺ f (s)∨ (
s ∼S f (s)∧ t ≺T g (t)

)
.

If S ~×T is increasing but S is not increasing, then at least S is nondecreasing (by the

previous proof). There must therefore be some s and f with s ∼S f (s). So for any t

and g , we must have t ≺T g (t) in order for S ~×T to be increasing.

The other two statements are obvious consequences of the definition of I: they

correspond to the two clauses of the disjunction.

A. EXTENDED PROOFS 142

A.5 Reductions

Proof of Theorem 5.9. It must be shown that if S ~×T is ‘distributive except for αS ’,

then err(S ~×T,E1) is distributive. This condition means that

(f , g)(s1, t1)⊕ (f , g)(s2, t2) = (f , g) ((s1, t1)⊕ (s2, t2))

for all f in F , g in G , s1 and s2 in S \ {αS}, and t1 and t2 in T .

An important property of the chosen set E1 is that if (s, t) is in E1, then so is

(f , g)(s, t) for any (f , g), because f (αS) =αS always.

Firstly, we can show that

rE1 ◦ (f , g)◦ rE1 = rE1 ◦ (f , g) (A.4)

for all (f , g) in F ×G . Clearly, these two compositions are equal when applied to a

pair (s, t) with s 6= αS , since then we have (s, t) = rE1 (s, t). Now consider applying

both to a pair (αS , t). We have

rE1 (f (αS), g (t)) = rE1 (αS , g (t)) = (αS ,αT)

and (
rE1 ◦ (f , g)

)
(rE1 (αS , t)) = (

rE1 ◦ (f , g)
)

(αS ,αT) = (αS ,αT)

so the equation holds in this case as well.

Distributivity requires that

rE1

((
rE1 ◦ (f , g)

)
(x)⊕ (

rE1 ◦ (f , g)
)

(y)
)= (

rE1 ◦ (f , g)◦ rE1

)(
x ⊕ y

)
for all (f , g) in F ×G , and x and y in S ×T . This can be rearranged, using A.4 and

other reduction properties, to yield the equivalent form

(f , g)(x)⊕ (f , g)(y) ∼ (f , g)(x ⊕ y)

where (∼) denotes the congruence induced by rE1 . Hence the two sides must either

be equal, or they must both yield elements of E1. This is as should be expected, since

the purpose of defining E1 was to avoid the situation where we could find (αS , t1) and

(αS , t2) emerging from two computations that ought to have been equivalent: now,

these will be mapped on to the same element (αS ,αT) in order to restore distributiv-

ity.

Suppose that x is in E1 but y is not. Then it must be that y = x ⊕ y 6= x, from the

definition of E1. We have

(f , g)(x)⊕ (f , g)(y) = (αS , t)⊕ (f , g)(y) = (f , g)(y)

A. EXTENDED PROOFS 143

for some t in T , and

(f , g)(x ⊕ y) = (f , g)(y)

so distributivity holds for this case, and by symmetry for the case when y is in E1 but

x is not.

If both x and y are in E1, then (f , g)(x)⊕(f , g)(y) and (f , g)(x⊕ y) must also be in

E1, and therefore are congruent under (∼).

Finally, suppose that neither x nor y is in E1. Then neither can have αS in their

S component, by definition of E1. The distributive law from the theorem statement

then implies that

(f , g)(x)⊕ (f , g)(y) = (f , g)(x ⊕ y),

which proves the remaining case.

Therefore, err(S ~×T,E1) is distributive.

144

Acknowledgements

Above all, my supervisor Tim Griffin deserves my thanks for his tireless support and
encouragement throughout the previous three years.

I would also like to thank M. Abdul Alim, John Billings, Ken Calvert, Jon Crowcroft,
Marcelo Fiore, Jonathan Hayman, Chung-Kil Hur, Franck Le, Andrew Moore, Vil-
ius Naudžiūnas, Andrew Pitts, Balraj Singh, João Sobrinho, Barney Stratford, Philip
Taylor, David Turner, Jamie Vicary, and Gordon Wilfong for their valuable advice and
support during the writing of this thesis.

I am grateful for the support of Cambridge libraries and librarians. These include
in particular, Nicholas Cutler of the Computer Laboratory library, and the staff of the
Rare Books Room and Manuscript Room in the University Library.

145

Bibliography

The official repository at http://www.rfc-editor.org/ has copies of all RFC docu-
ments referred to below.

Ahuja, Ravindra K., Kurt Mehlhorn, James Orlin and Robert Endre Tarjan. 1990.
Faster algorithms for the shortest path problem. Journal of the Association for
Computing Machinery 37(2): 213–223.

Banach, Stefan. 1922. Sur les opérations dans les ensembles abstraits et leur applica-
tion aux équations intégrales. Fundamenta Mathematicae 3:133–181.

Bellman, Richard. 1958. On a routing problem. Quarterly of Applied Mathematics
16(1): 87–90.

Bertsekas, Dimitri P. and Robert Gallager. 1992. Data networks. 2nd edition. Prentice-
Hall.

Birkhoff, Garrett. 1937. Rings of sets. Duke Mathematical Journal 3(3): 443–454.

Birkhoff, Garrett. 1948. Lattice Theory. 2nd edition. Colloquium Publications 25. New
York: American Mathematical Society.

Callon, Ross W. 1990. RFC 1195: Use of OSI IS-IS for routing in TCP/IP and dual envir-
onments.

Carré, Bernard A. 1971. An algebra for network routing problems. Journal of the In-
stitute of Mathematics and its Applications 7(3): 273–294.

Carré, Bernard A. 1979. Graphs and networks. Oxford University Press.

Coltun, Rob. 1989. OSPF: An Internet routing protocol. ConneXions: The Interoper-
ability Report 3(8): 19–25.

Cormen, Thomas H., Charles E. Leiserson and Ronald L. Rivest. 1990. Introduction
to algorithms. 1st edition. MIT Press/McGraw-Hill.

http://www.rfc-editor.org/

BIBLIOGRAPHY 146

Debreu, Gerard. 1954. Representation of a preference ordering by a numerical func-
tion. In Decision Processes, edited by R. M. Thrall, C. H. Coombs and R. L. Davis.
Wiley. Chapter 11, 159–166.

Dijkstra, Edsger W. 1959. A note on two problems in connexion with graphs. Nu-
merische Mathematik 1:269–271.

Feamster, Nick and Hari Balakrishnan. 2005. Correctness properties for Internet
routing. Proceedings of the 43rd Allerton Conference on Communication, Control
and Computing.

Floyd, Robert W. 1962. Algorithm 97: Shortest path. Communications of the Associ-
ation for Computing Machinery 5(6): 345.

Ford Jr., Lester Randolph and Delbert Ray Fulkerson. 1956. Maximal flow through a
network. Canadian Journal of Mathematics 8:399–404.

Fredman, Michael L. and Robert Endre Tarjan. 1987. Fibonacci heaps and their
uses in improved network optimization algorithms. Journal of the Association for
Computing Machinery 34(3): 596–615.

Fredman, Michael L. and Dan E. Willard. 1994. Trans-dichotomous algorithms for
minimum spanning tree and shortest path. Journal of Computer and System Sci-
ences 48(3): 533–551.

Gao, Lixin and Jennifer Rexford. 2000. Stable internet routing without global coordin-
ation. Proceedings of ACM SIGMETRICS. 307–317.

Garcia-Luna-Aceves, J. J. 1993. Loop-free routing using diffusing computations.
IEEE/ACM Transactions on Networking 1(1): 130–141.

Głazek, Kazimierz. 2002. A guide to the literature on semirings and their applications
in mathematics and information sciences: with complete bibliography. Kluwer
Academic Publishers.

Gondran, Michel and Michel Minoux. 1984. Graphs and algorithms. Wiley.

Gondran, Michel and Michel Minoux. 2001. Graphes, dioïdes et semi-anneaux: Nou-
veaux modèles et algorithmes. Tec & Doc.

Gouda, Mohamed G. and Marco Schneider. 2003. Maximizable routing metrics.
IEEE/ACM Transactions on Networking 11(4): 663–675.

Griffin, Timothy G. and Alexander J. T. Gurney. 2008. Increasing bisemigroups and
algebraic routing. In Relations and Kleene algebra in computer science, Lecture
Notes in Computer Science 4988. Proceedings of the 10th International Confer-

BIBLIOGRAPHY 147

ence on Relational Methods in Computer Science (RelMiCS 10). Springer-Verlag.
123–137.

Griffin, Timothy G., F. Bruce Shepherd and Gordon Wilfong. 1999. Policy disputes in
path vector protocols. Proceedings of the 7th IEEE International Conference on
Network Protocols (ICNP 99).

Griffin, Timothy G., F. Bruce Shepherd and Gordon Wilfong. 2002. The stable paths
problem and interdomain routing. IEEE/ACM Transactions on Networking 10(2):
232–243.

Griffin, Timothy G. and João Luís Sobrinho. 2005. Metarouting. Proceedings of ACM
SIGCOMM. 1–12.

Griffin, Timothy G. and Gordon Wilfong. 2000. A safe path vector protocol. Pro-
ceedings of the 19th Annual IEEE Conference on Computer Communications (IN-
FOCOM 2000).

Grillet, Pierre Antoine. 1995. Semigroups: An introduction to the structure theory.
Monographs and textbooks in pure and applied mathematics 193. Marcel Dek-
ker.

Gurney, Alexander J. T. and Timothy G. Griffin. 2007. Lexicographic products in
metarouting. Proceedings of the 15th IEEE International Conference on Network
Protocols (ICNP 07). 113–122.

Hedrick, Charles L. 1988. RFC 1058: Routing Information Protocol.

Huston, Geoff. 2006. Exploring autonomous system numbers. The Internet Protocol
Journal 9(1): 2–24.

Johnson, Donald B. 1977. Efficient algorithms for shortest paths in sparse networks.
Journal of the Association for Computing Machinery 24(1): 1–13.

Kelley, John L. 1955. General topology. Graduate Texts in Mathematics 27. Springer.

Kilp, Mati, Ulrich Knauer and Alexander V. Mikhalev. 2000. Monoids, acts and cat-
egories: with applications to wreath products and graphs. Expositions in Math-
ematics 29. Walther de Gruyter.

Kirk, William A. 2001. Contraction mappings and extensions. In Handbook of metric
fixed point theory. Edited by William A. Kirk and Brailey Sims. Springer.

Kleene, Stephen C. 1956. Representation of events in nerve nets and finite automata.
In Automata Studies, edited by Claude Elwood Shannon and John McCarthy.
Princeton University Press. 3–42.

BIBLIOGRAPHY 148

Kruskal, Joseph B. 1972. The theory of well-quasi-ordering: A frequently discovered
concept. Journal of Combinatorial Theory, A, 13(3): 297–305.

Lehmann, Daniel J. 1977. Algebraic structures for transitive closure. Theoretical Com-
puter Science 4(1): 59–76.

Lengauer, T. and D. Theune. 1991. Efficient algorithms for path problems with gen-
eral cost criteria. In Automata, Languages and Programming: 18th International
Colloquium, Madrid, Spain; July 18–22, 1991. Lecture Notes in Computer Science
510. Springer-Verlag. 314–326.

Lindem, Acee, Rob Coltun, Dennis Ferguson and John Moy. 2008. RFC 5340: OSPF
for IPv6.

Lougheed, Kirk and Yakov Rekhter. 1989. RFC 1105: A Border Gateway Protocol (BGP).
Experimental.

Lougheed, Kirk and Yakov Rekhter. 1990. RFC 1163: A Border Gateway Protocol (BGP).

Malkin, Gary Scott. 1998. RFC 2453: RIP version 2.

Malkin, Gary Scott and Robert E. Minnear. 1997. RFC 2080: RIPng for IPv6.

Manger, Robert. 2006. Composite path algebras for solving path problems in graphs.
Ars Combinatoria 78(1): 137–150.

Manger, Robert. 2008. A catalogue of useful composite semirings for solving path
problems in graphs. Proceedings of the 11th International Conference on Opera-
tional Research (KOI 2006).

McQuillan, John Macrae. 1974. Adaptive routing algorithms for distributed computer
networks. PhD thesis, Harvard University. Also appeared as BBN Technical Re-
port 2831.

McQuillan, John Macrae, Isaac Richer and Eric C. Rosen. 1980. The new routing al-
gorithm for the ARPANET. IEEE Transactions on Communications 28(5): 711–719.

Mohri, Mehryar. 2002. Semiring frameworks and algorithms for shortest-distance
problems. Journal of Automata, Languages and Combinatorics 7(3): 321–350.

Moore, Edward F. 1959. The shortest path through a maze. Proceedings of an Interna-
tional Symposium on the Theory of Switching: Cambridge, Massachusetts, USA;
2–5 April 1957. Annals of the Computation Laboratory of Harvard University 30.
Harvard University Press.

Moy, John. 1989. RFC 1131: The OSPF specification.

BIBLIOGRAPHY 149

Moy, John. 1998a. OSPF: Anatomy of an Internet routing protocol. Addison-Wesley.

Moy, John. 1998b. RFC 2328: OSPF version 2.

Moy, John. 2000. OSPF: Complete implementation. Addison-Wesley.

Novák, Vítězslav. 1965. On the lexicographic product of ordered sets. Czechoslovak
Mathematical Journal, new series, 15(2): 270–282.

Oran, David. 1990. RFC 1142: OSI IS-IS intra-domain routing protocol.

Prieß-Crampe, Sibylla. 1990. Der Banachsche Fixpunktsatz für ultrametrische
Räume. Results in Mathematics 18(1–2): 178–186.

Rekhter, Yakov and Tony Li. 1995. RFC 1771: A Border Gateway Protocol 4 (BGP-4).

Rekhter, Yakov, Tony Li and Susan Hares. 2006. RFC 4271: A Border Gateway Pro-
tocol 4 (BGP-4). Replaces Rekhter and Li (1995).

Rosen, Eric C. 1982. RFC 827: Exterior Gateway Protocol (EGP).

Rote, Günter. 1985. A systolic array algorithm for the algebraic path problem. Com-
puting 34(3): 191–219.

Rote, Günter. 1990. Path problems in graphs. In Computational graph theory, edited
by Gottfried Tinhofer et al. Computing Supplementa 7. Springer-Verlag. 155–189.

Roy, Bernard. 1959. Transitivité et connexité. Comptes rendus hebdomadaires des
séances de l’Académie des Sciences 249:216–8.

Saitô, Tôru. 1970. Note on the lexicographic product of ordered semigroups. Proceed-
ings of the Japan Academy 46(5): 413–416.

Sobrinho, João Luís. 2003. Network routing with path vector protocols: Theory and
applications. Proceedings of ACM SIGCOMM. 49–60.

Sobrinho, João Luís. 2005. An algebraic theory of dynamic network routing.
IEEE/ACM Transactions on Networking 13(5): 1160–1173.

Szpilrajn, Edward. 1930. Sur l’extension de l’ordre partiel. Fundamenta Mathemat-
icae 16:386–389.

Thorup, Mikkel. 2007. Equivalence between priority queues and sorting. Journal of
the Association for Computing Machinery 54(6): Article 28. Expanded version of
an article that appeared in the 43rd IEEE Symposium on Foundations of Com-
puter Science (FOCS 2002).

BIBLIOGRAPHY 150

Traina, Paul, Ravishanker Chandrasekeran and Tony Li. 1996. RFC 1997: BGP com-
munities attribute.

Warshall, Stephen. 1962. A theorem on Boolean matrices. Journal of the Association
for Computing Machinery 9(1): 11–12.

Wongseelashote, Ahnont. 1976. An algebra for determining all path-values in a net-
work with application to k-shortest-paths problems. Networks 6(4): 307–334.

Wongseelashote, Ahnont. 1979. Semirings and path spaces. Discrete Mathematics
26(1): 55–78.

Zimmermann, Uwe. 1981. Linear and combinatorial optimization in ordered algeb-
raic structures. Annals of discrete mathematics 10. Elsevier North-Holland.

	Title page
	Declarations
	Summary
	Contents
	1 Introduction
	2 Algebraic routing
	2.1 Routing solutions and optimality criteria
	2.2 Fundamental definitions
	2.3 Algorithms and properties
	2.4 Metalanguages

	3 Minimal sets of paths
	3.1 The distributive lattice connection
	3.2 Reductions and congruences

	4 Convergence for non-distributive algebras
	4.1 Two convergence proofs
	4.2 Ultrametrics and a new proof

	5 Lexicographic choice
	5.1 Lexicographic product in orders and monoids
	5.2 Inference rules
	5.3 Errors and infinities

	6 Modelling network partitions
	6.1 Network areas
	6.2 The road to BGP
	6.3 The scoped product
	6.4 The road away from BGP

	7 Conclusion
	A Extended proofs
	A.1 Convergence
	A.2 Basic properties for the lexicographic product
	A.3 Properties for global optima
	A.4 Properties for local optima
	A.5 Reductions

	Acknowledgements
	Bibliography

