Reduction-based Formal Analysis of BGP Instances

Anduo Wang!  Carolyn Talcott>  Alexander J. T. Gurney®
Boon Thau Loo'  Andre Scedrov!

University of Pennsylvania  SRI International
{anduo, boonloo}@cis.upenn.edu clt@csl.sri.com
agurney@seas.upenn.edu scedrov@math.upenn.edu

Abstract. Today’s Internet interdomain routing protocol, the Border Gateway
Protocol (BGP), is increasingly complicated and fragile due to policy misconfig-
urations by individual autonomous systems (ASes). These misconfigurations are
often difficult to manually diagnose beyond a small number of nodes due to the
state explosion problem. To aid the diagnosis of potential anomalies, researchers
have developed various formal models and analysis tools. However, these tech-
niques do not scale well or do not cover the full set of anomalies. Current tech-
niques use oversimplified BGP models that capture either anomalies within or
across ASes, but not the interactions between the two. To address these limita-
tions, we propose a novel approach that reduces network size prior to analysis,
while preserving crucial BGP correctness properties. Using Maude, we have de-
veloped a toolkit that takes as input a network instance consisting of ASes and
their policy configurations, and then performs formal analysis on the reduced
instance for safety (protocol convergence). Our results show that our reduction-
based analysis allows us to analyze significantly larger network instances at low
reduction overhead.

1 Introduction

The Internet today runs on a complex routing protocol called the Border Gateway Pro-
tocol or BGP for short. BGP enables Internet Service Providers (ISPs) worldwide to
exchange reachability information to destinations over the Internet, and simultaneously,
each ISP acts as an autonomous system that imposes its own import and export policies
on route advertisements exchanged with its neighbors.

Over the past few years, there has been a growing consensus on the complexity and
fragility of BGP routing. Even when the basic routing protocol converges, conflicting
policy decisions among different ISPs have led to route oscillation and slow conver-
gence. Several empirical studies (e.g. [12]) have shown that there are prolonged periods
in which the Internet cannot reliably route data packets to specific destinations, due to
routing errors induced by BGP.

Since protocol oscillations cause serious performance disruptions and router over-
head, researchers devote significant attention to BGP stability (or “safety””). A BGP
system converges and is said to be safe, if it produces stable routing tables, given any



sequence of routing message exchanges. We broadly refer to any route misconfigura-
tions that result in instability as BGP anomalies in this paper. To study potential config-
uration issues with BGP, the network community has studied small network instances.
Sometimes, these come from a single network (the “internal BGP” or “iBGP” case), or
they may relate to interaction between different networks (“‘external BGP” or “eBGP”).
These small topology configurations (or “gadgets”) serve as examples of safe systems,
or counterexamples showing a safety problem such as lack of convergence.

Today, analyzing these gadgets is a manual and tedious process, let alone analyzing
actual network instances that are orders of magnitude larger. Researchers check these
gadgets by manually constructing “activation sequences” where the nodes make suc-
cessive routing decisions that form an oscillation. To automate the process, in our prior
work [17], we have developed an analysis toolkit using Maude [1] that automates the
process of analyzing BGP instances using a rewriting logic [13] approach. While auto-
mated, this approach can only work for small network instances, since the approach is
susceptible to the state explosion problem as the number of nodes increases. To address
these challenges, this paper makes the following contributions.

First, we identify the key contributing attributes in BGP routing that lead to eBGP
and iBGP anomalies resulting in route oscillations.

Second, we propose an efficient algorithm for reducing BGP instances, so that the
network size can be reduced by merging nodes in such a way that the overall con-
vergence properties remain the same. Our reduction uses the well-known Stable Paths
Problem (SPP) [9] formalism for safety analysis of BGP configurations, where the en-
tire instance is modeled in terms of the router-level topology and each router’s policy-
induced route preferences. We show how the reduction works for both inter-AS and
intra-AS policy configurations using well-known gadgets as examples, and provide for-
mal proofs that the reduction correctly preserves convergence properties in general for
any arbitrary BGP instances. The reduction process not only reduces the state size for
subsequent analysis, but also provides us the capability to reduce an existing BGP net-
work instance into a known anomaly (i.e. misbehaving gadget), or determine equiva-
lence between two configuration instances.

Finally, using Maude, we develop a tool that (1) takes as input router configura-
tions, (2) extracts the SPP representation of a protocol by generating and comparing
all possible routes against each AS policy, (3) applies the reduction step, and (4) per-
forms an exhaustive state exploration on the reduced BGP instance to check for possible
configuration anomalies that result in divergence.

Our results show that the reduction-based analysis is much more effective than
the prior approach of doing exhaustive search on unreduced instances [17]. The data
demonstrate that we have not only gained speed, but also the ability to analyze network
instances that were previously infeasible to study.

For example, an instance which would naively take 221193ms to analyze, can now
be reduced in 22ms to one which takes only 8ms to analyze, which makes the new
method over 7000 times faster (Table 3). There are also many instances whose analysis
was infeasible with the previous approach, but which can now be tackled by reduction.
The naive technique was limited to networks of no more than about 20 nodes (at a
push, 25) whereas we now have no difficulty in scaling to instances with over a hundred



nodes, and with a greater arc density, which are more characteristic of real networks.

2 Analyzing BGP Anomalies

BGP assumes a network model in which routers are grouped into various Autonomous
Systems (ASes), each assumed to be under separate administrative control. An indi-
vidual AS exchanges route advertisements with neighboring ASes using a path-vector
protocol. Upon receiving a route advertisement, a BGP router may choose to accept or
ignore the advertisement based on its import policy. If the route is accepted, the node
stores the route as a possible candidate. Each node selects among all candidate routes
the best route to each destination, based on its local route preference policy. Once a
best route is selected, the node advertises it to its neighbors. A BGP node may choose
to export only selected routes to its neighboring ASes based on its export policy. The
determination of these three kinds of policy is up to the network operator: BGP allows
considerable flexibility. Conflicting policies, within or between ASes, are the cause of
protocol oscillation, as the protocol struggles and fails to satisfy all policies at once.

Router-to-router BGP sessions come in two flavors: external BGP (eBGP), which
establishes routes between ASes; and internal BGP (iBGP), which distributes routes
within an AS. All routers maintain internal state, including their roster of known paths
for all destinations, and the list of other routers to whom they are connected. They
communicate with one another by exchanging route advertisements. Not all routers
communicate directly with routers outside their own AS. If they do, they are border
routers; if they do not, they are infernal routers. Additionally, some routers may have a
special role as route reflectors, collating and distributing route advertisements on behalf
of their clients, to avoid having to establish pairwise connections between all routers in
an AS.

lStage \BGP route selection step

1. Highest LOC_PREF

eBGP |2. Lowest AS path length

3. Lowest origin type

4. Lowest MED (with same NEXT-HOP AS)
iBGP |5. Closest exit point (lowest IGP cost)

6. Lowest router ID (break tie)

Table 1. Key attributes in BGP route selection

Every BGP route is endowed with attributes that describe it. These are summarized
in Table 1. We also characterize these by whether they are primarily associated with
eBGP- or iBGP-level routing decisions. Whenever an AS receives a new route, it will
compare the attributes of its current available routes (for a given destination) with the
new route, and then decide whether the new route is selected as best route. The attributes
are listed in the order in which they are compared during route selection: if the routes
are tied at any stage, then BGP proceeds to consider the next attribute on the list.



The most important attribute in eBGP route selection is local preference (LOC_PREF).
This is a value set by each router on routes it receives, according to (arbitrary) rules es-
tablished by the network operator. If two routes have the same local preference, then the
next tiebreaking attribute is the AS path length—the number of ASes through which this
route passes—followed by the ‘origin’ code. The next step is to use the multi-exit dis-
criminator (MED) attribute, the most important attribute in iBGP route selection, which
says which individual link is preferred, out of the many links between this AS and its
neighbor. If that was not enough to determine a single best route, BGP breaks ties by ex-
amining the shortest-path distance to the relevant border router. Finally, if all else fails,
it uses the value of each router’s unique identifier. This final step is meant to ensure that
all possible routes can be placed in a total order, with no two routes being equivalent in
preference.

Oscillation anomalies in BGP can be localized to the definition and use of particular
attributes. This paper looks at three families of problems.

¢ In eBGP anomalies, routing policy conflicts occur at an inter-AS level. The typical
causing attribute is LOC_PREF, because it is set arbitrarily at each AS, independently
of any other.

o iBGP anomalies are limited to a single AS, and associated with MED. Due to a quirk
in the decision procedure, it is possible for there to be three routes p, g, and r such that
p is preferred to g, g to r, and r to p. The router will be unable to settle on a single
choice, if there is feedback where its actions cause the visibility of those three routes
to change.

e iBGP-IGP anomalies result from inconsistency between the semantics of route re-
flectors, and particular IGP distance values.

We will revisit these anomalies and give formal definitions in Section 4. We will
also examine the correctness of network reduction with respect to these anomalies.

3 Network Reduction

Existing network analysis techniques do not scale well: Static analysis [6,5,8,2,7, 14]
by checking combinatorial structure that reflects routing oscillations is normally NP-
complete; and dynamic analysis [3, 11] by systematic exploration of the protocol state
space will likewise suffer an exponential blow-up as problem size increases. As a result,
analysis techniques normally assume an over-simplified BGP model that only covers a
portion of the routing anomalies in Section 2.

To address these limitations, we propose network reduction that preservers correct-
ness properties - a process that simplifies network instances. Network reduction can be
viewed either as a pre-step prior to formal analysis in order to reduce analysis space; or
a model construction step that extracts a simplified model from the real BGP instance.

In network reduction, the basic idea is to incrementally merge two network nodes
into one while preserving network properties. To formally define reduction, we need to
first represent a BGP instance in an abstract form that also captures each node’s routing
policy. We choose the extended stable paths problem (SPP) as the formal representation
to include both eBGP and iBGP instances.



SPP is a well-established combinatorial model of BGP configurations that captures
the outcomes of routing policy—which paths are preferred over which other paths,
at each router—while avoiding the need for detailed modeling of the BGP decision
process in all its complexity.

Extended SPP is also the representation we use to implement reduction. In addition,
we provide automatic generation of extended SPP for a BGP instance given its network
topology and high-level routing policy (e.g. how the path attributes are configured/-
transformed). We will revisit this in Section 5.

3.1 Hierarchical Reduction

The SPP formalism captures the route preferences that exist for all routers, over their
routes to a single fixed destination. ! An SPP instance consists of a graph, together with
each router’s preferences over paths in the graph. We define this in a more general way
than in previous work.

Definition 1 An extended SPP instance is given by G = (V, E,d, P, <), where V is
the set of nodes, E is the set of directed arcs, d € V is the destination node, P is the
set of all permitted paths to d, and the binary relation < over P indicates when one
route is preferred over another. Every path in P must be a simple path (that is, no node
appears more than once).

For a given extended SPP instance GG as above, and a node ¢ in V, write Pt for
the subset of P consisting of paths from ¢ to d. The SPP definition requires that <
be a transitive total order on each P?, but our definition does not enforce that, and
supports more routing policies. Routes from different source nodes are incomparable.
Conventionally, ‘p < ¢’ means that path p is preferred to path g, where both p and ¢ are
paths to d from the same source.

In this paper, we will use the symbol ‘o’ for concatenation of arcs and paths. If (7, §)
is an arc in F, and p is a path from j to d, then their concatenation (¢, j) o p is a path
from i to d. Similarly, if p is a path from ¢ to j, and ¢ is a path from k to [, and (j, k) is
an arc in F, then the concatenation is p o (j, k) o g or just p o q.

This combinatorial definition washes away the some important features about how
BGP operates and how paths are chosen: in particular, the distinction between external
and internal BGP. The eBGP/iBGP distinction is critical for our reduction technique,
because it is based on the observation that certain kinds of anomaly can be ‘localized’ to
one or the other mode. Our reductions will operate on the iBGP level first, for each AS.
After iBGP simplification, we simplify eBGP by reducing the extended SPP instance
for the remaining network. This ordering also allows certain kinds of inconsistency, that
can only occur in iBGP, to be detected and handled; we do not need to contaminate our
other reductions with knowledge of these special cases. Since our reduction method
includes steps that are specific to one or the other mode of operation— we assume
that, in reduction, all we are faced with are extended SPP instances, derived from BGP
configurations.

! Route preferences are configurable separately for each destination, so this assumption focuses
the analysis rather than limits it.



3.2 Network Reduction

This subsection proposes sufficient conditions for two BGP nodes to be ‘unifiable’,
meaning that they can be merged into one node. The reduction proceeds by repeatedly
(1) locating two unifiable nodes, and rewriting their local configuration, and (2) rewrit-
ing the remainder of the BGP instance to reflect that local change. In the following,
assume we are working with a given extended SPP instance G = (V, E,d, P, <).

Locate unifiable nodes

We identify two special cases of unifiable nodes, which we call duplicate and supple-
mentary. We first define an auxiliary notion: “node rewrite”, based on which unifiable
node conditions are defined.

Definition 2 For two nodes i, k in V, rewrite i to k by rewriting P* and < as follows:

1. Check for any path p in P on which i and k both occur, if they occur only in an
adjacent position, then proceed to the next step, otherwise abort the rewrite.

2. For every path p in P, ifi or ik occurs, replace it by k.

3. For every two distinct paths p and q in P, that rewrite to p’ and ¢’ respectively,
check whether p' and q' are equal. If they are, then abort the rewrite; otherwise,
proceed to the next step.

4. Every preference p < q, where p and q are in P* and rewrite to p' and ¢' respec-
tively, becomes p' < ¢'.

Step 1 ensures that if there is any permitted path on which ¢ and k£ both occur,
with some intervening nodes between them, then they are not considered for rewriting
(unification). Therefore, after the first step of rewriting, the paths in P? will still be
simple (k will not occur twice). Step 3 ensures that after rewriting, no two paths in P*
can collapse into one. Based on this rewriting notion, the two unifiable node conditions
are as follows.

Definition 3 Two nodes i, j in V are unifiable if i is supplementary for j, or i and j
are duplicate, where:

1. A node i is supplementary for j if:
1. ¢ can be rewritten to j as defined in Definition 2.
2. For every path p in P?, there is some path ¢ in P7 such that p and ¢ are equal
after rewriting.
3. Whenever p; < p» in P, there are paths ¢; and ¢ in P7 such that ¢; < g2 p1
and ¢ are equal after rewriting; and p, and g- are equal after rewriting.
4. Two nodes ¢ and j in V' are duplicate if each is supplementary for the other.

Reduce BGP Instance
After locating two unifiable nodes ¢ and j, we rewrite the entire extended SPP to reflect
this unification. This completes one network reduction step.
First define a function 6;; from V to V'\ {i} by 6;;(¢) = 6,;(j) = j,and 6,;(z) = «
for all z not equal to either ¢ or j. This function induces corresponding maps on F and
P, as follows.



Definition 4 If i and j are unifiable nodes in V, then G may be reduced ro G' =
(V',E',d, P’ <"), where

o VI=V\{i}

o B ={(0:(u),0:;(v)) | (w,v) € EN{(i,5), ()} }

o P’ consists of all paths in P after rewriting each node according to 8;;, and eliding
any (j, j) arc.

o p' <’ ¢ ifand only if p' # ¢’ and there exist paths p and q in P such that p rewrites
top, q rewritesto q', and p < q.

3.3 Examples: Reducing eBGP and iBGP Instances

We now illustrate the intuition of network reduction by applying reduction to various
eBGP and iBGP instances.

Example 1 Reducing eBGP instances Two eBGP instances called Bad gadget and
Good gadget are shown on the left of Figure 1. The topology of each eBGP instance
is given by the network graph, whereas the routing policies are shown by the path pref-
erences indicated alongside each network node. In each list, the more preferred paths
are at the top, and paths that do not appear are not permitted. For example, in the good
gadget, the policy for node 1 says it has two permitted paths, 1 3 0 and 1 0, where 1
3 0ispreferredto1 0.

In both gadgets, nodes 3,4 are unifiable nodes according to Definition 3. After re-
duction, these nodes are merged into one, shown on the right hand side of Figure 1.

130 210 130 210
10 ' 20
Je
i50 0 30
Badgadget
130 210 130
430
30 420
3420
Good gadget

Fig. 1. Reducing bad/good gadget makes it easier to detect divergence/prove safety.

The reason why the bad gadget is called ‘bad’ is that it suffers from permanent route
oscillation: the preferences are incompatible, there is no stable solution, and the iterative
attempt to find one does not terminate. The ‘dispute wheel’ pattern alluded to above is



what causes the badness, and after reduction this pattern becomes clearer. In the reduced
bad gadget instance, we can see that each of the three outer nodes prefers an indirect
path (around the cycle and then in) over a direct one (straight to the destination). This
is an order-three dispute wheel. The pattern was present in the original instance, but
obscured by the presence of node 4. On the other hand, the ‘good’ gadget has a unique
stable solution, which is found by iteration. We can identify the solution on the reduced
instance (shown here in green), and the original instance also converges. Appendix C
illustrates the application of our Maude exhaustive search technique, the detection of an
oscillation, and the reduction method.

In addition to good and bad gadget, appendix A shows an eBGP instance that is not
reducible, and the reduction of an iBGP instance.

4 Correctness of Network Reduction

We have identified three types of routing anomalies in Section 2, and associated each of
them with particular BGP attributes. In this section, we examine sufficient conditions
by which each of these three can be avoided. These are safety, the standard property
for convergence of a path-vector routing system; acyclic preference, for ensuring that
iBGP configurations express a consistent choice function; and IGP-iBGP consistency,
for avoiding intra-AS oscillation. We then show that our reduction is sound with respect
to preservation of the first two properties, but it does not always preserve the third.
Therefore, the third condition needs to be checked separately.

4.1 eBGP Correctness

The eBGP correctness property we consider is safety [15, 10]. The progress of the
BGP algorithm towards a solution depends on the timing of messages and other non-
deterministic factors: we want to ensure that every execution schedule will result in
a routing solution being found, regardless of the asynchronous nature of the protocol.
The final state is characterized by stability, meaning that no future messages will affect
which best paths are selected by each router.

Definition 1. A BGP instance is safe, if under all possible executions, it converges to
a stable state, where the best routes selected by all the routers form a policy-compliant
routing tree.

We show that our reduction preserves safety, using a structure called the path di-
graph [15]. This is derived from an SPP instance (V| E, d, P, <). Compared with the
extended SPP which is used to define reduction, SPP requires an additional constraint:
< totally orders each P? where i is a node in V. This holds for instances which are
restricted to the ‘eBGP’ attributes, plus the router identifier, in Table 1.

Definition 5 Let G = (V, E, d, P, <) be an SPP instance. The path digraph is a graph
whose nodes are the elements of P, and where there is an arc (p, q) from p to q if either
of these two cases holds:

1. If ¢ = r o p for some path r, there is a ‘transmission arc’.



2. Ifp and q are two paths in P* and p < q, there is a ‘preference arc’.

If the digraph is acyclic then the SPP has a unique stable solution, which can be
found by iteration from any starting state. We will call an SPP instance cyclic (or
acyclic) if its path digraph is cyclic (or acyclic).

The following proposition 1, proved by Sobrinho [15], relates cyclicity of the di-
graph to safety of the SPP, and therefore of the BGP configuration it represents.

Proposition 1. [fa SPP instance is acyclic, then it is safe. If an SPP instance is cyclic,
then we can construct an execution trace that exhibits route oscillation.

Our main result (Lemma 1) is that our reduction technique transforms cyclic SPPs into
cyclic SPPs, and acyclic SPPs into acyclic SPPs. This means that we never have false
positives or false negatives, with respect to this safety property, after applying the re-
duction.

Lemma l. Let G = (V,E,d, P, <) be an SPP instance, containing unifiable nodes
wand v, and let G = (V' E',d, P!, <') be the result of applying the procedure of
Definition 4 to unify those two nodes. Then G is cyclic if and only if G' is cyclic.

Proof. See appendix B.

Finally, the following theorem proves that network reduction is sound: to analyze G
for safety, it is sufficient to analyze its reduction G’.

Theorem 1. If G’ is acyclic then G is safe; If G’ is cyclic then in running G, there
exists at least one execution trace that exhibits route oscillation.

Proof. Obvious from Lemma 1 and Proposition 1. a

4.2 iBGP correctness: Cyclic iBGP Route Preference

As previously noted, use of the MED attribute means that routes might not be totally
ordered, and therefore Proposition 1 is inapplicable. We handle this case by employing
a more general notion of route selection in our analysis, and can show that our reduction
does preserve these kinds of preference cycle. The details are in Appendix B

4.3 iBGP Correctness: IGP-iBGP Consistency Property

While BGP can choose the correct egress point in an AS, for each destination, establish-
ment of the intra-AS path to that border router is the responsibility of another protocol
(an interior gateway protocol or IGP). Problems can occur if the iBGP configuration
does not match the distance values used in the IGP. Our network reduction is designed
for analysis BGP routing policies, and is unaware of IGP-iBGP inconsistency (see Ap-
pendix section B.3). Therefore, to ensure the soundness of analysis, one should check
IGP-iBGP consistency before applying network reduction, using pre-existing methods
from the literature [16, 4].



5 Network Reduction in Maude

To validate our reduction method, we have extended our library for analysis of BGP
configurations [17] to support automatic abstraction from dynamic (BGP) configu-
rations to static (extended SPP) configurations, reduction based on SPP configurations,
and integration with dynamic exhaustive search analysis. Using the original library BGP
instances up to 25 nodes have been successfully analyzed in minutes. Using our reduc-
tion technique, we are able to reduce and analyze various 100 nodes BGP instances
within seconds. Our extended library consists of the following three components:

¢ Dynamic network representation For a BGP instance, we require users to input rout-
ing policies, i.e., the values of the BGP attributes that cause anomalies. We also require
users to input the network topology. Based on the routing policy and topology, we
automatically generate the dynamic representation of the BGP instance. The dynamic
representation includes configurations (snapshots of an executing instance) and rewrite
rules describing a router’s actions during execution of the BGP protocol. The dynamic
representation can be used to compute the complete set of permitted paths, and route
selection information.

o Static network representation While the dynamic representation is good for simu-
lating the dynamic behavior of a BGP system, it is not the right representation for
network reduction. Thus we introduce a static representation of BGP instances corre-
sponding to the extended SPP instance (Definition 1). For each router, its static rep-
resentation consists of its complete set of permitted paths, and route selection result
given any sub-set of the permitted paths. Our library provides functions to compute
the static representation from the dynamic initial network state.

e Network reduction on static representation Our library implements the network
reduction process described in Definition 4 that applies to the static (extended SPP)
representation.

Our library is implemented in Maude [1], a language and tool based on rewriting
logic. Rewriting logic [13] is a logical formalism that is based on two simple ideas:
states of a system can be represented as elements of an algebraic data type, and the
behavior of a system can be given by transitions between states described by local
rewrite rules. A rewrite rule has the form ‘¢ = ¢’ if ¢’ where ¢ and ¢’ are patterns
(terms possibly containing variables) and c is a condition (a boolean term). Such a rule
applies to a system state s if £ can be matched to a part of s by supplying the right
values for the variables, and if the condition ¢ holds when supplied with those values.
In this case the rule can be applied by replacing the part of s matching ¢ by ¢’ using
the matching values for variables in ¢'. Maude provides a high performance rewriting
engine featuring matching modulo associativity, commutativity, and identity axioms.
Given a specification S of a concurrent system, Maude can execute this specification,
allowing one to observe some possible behaviors of the system. One can also use the
search functionality of Maude to check if a state meeting a given condition can be
reached during any system execution.

The dynamic representation is a small extension of [17] to account for the MED
attribute. In this paper we only discuss generation of the static representation and the
implementation of the reduction process.



5.1 Computing the Static BGP Representation

We recall that the dynamic representation of a BGP router has the form [rid : asid
INb: nbrs,LR: routes ,BR: best] where rid : asid is called the NodeInfo
with rid the router ID, and asid the AS ID. The remaining three arguments represent
the routers state: nbrs is a list of neighbor router IDs, routes is a list of routes, and
best is the best route.

Recall that in Definition 4, we apply the network reduction to the static representa-
tion of a BGP system G = (V, E, d, P, <). In this representation we need the following
information: (1) the complete set of permitted paths P that the routers could ever gen-
erate in protocol execution; and (2) the < relation that determines how each router
selects the best route, given an arbitrary subset of permitted paths. To capture P and
<, we introduce the static representation of a BGP system using the Maude constructor
declaration:
op [_INb:_,perPath:_,pref:_] : NodeInfo ListNodeInfo Listroute Listsel-fun

-> absNode .

Similar to the dynamic representation, the first two arguments (indicated by under-
scores) specify the router’s ID, AS and neighbor information. What is different is the
second two attributes: rather than keeping the dynamic routing table and best route
attributes, we have the static permitted paths attribute perPath:, and the route prefer-
ence attribute pref:. The value of perPath: is the list of paths that can be computed
during BGP execution, and the value of pref: represents the preference function as a
list of pairs, each consisting of a route set and the selected route.

A BGP system’s static representation is computed from the specification of the dy-
namic representation in two steps. First, the complete set of permitted paths is computed
by simulating route exchanges and computation on the dynamic representation using the
the rewrite rule compute-spp:

rl [compute-spp]:

[from (S1 : AS1l) to S2 : (S3 : AS3),1f2, [aspl],medl, S4]
[S2 : AS2 |Nb: nodes2, LR: 1lr2, BR: nilRoute ]

=>

if ((occurs (import ((S1 : AS1l), (S2 : AS2), ((S3 : AS3),1f2, [aspl],medl,S4)),1r2)) or
import (...) == nilRoute)
then [S2 : AS2 |Nb: nodes2, LR: 1lr2, BR: nilRoute ]
else
[S2:AS2|Nb: nodes2,
LR: update (import(...),1lr2)

BR: nilRoute ]
generateMsg ((S2:AS2) ,nodes2, export (import (...)))
fi .

Here, the left-hand matches a router s2 and a route message sent from its neighbor s1.

The right-hand side says that S2 computes a new route import (...), and if either
of the two conditions occurs (import (...), 1lr2) or import (...)==nilRoute
holds, that is, if either the new route import (...) is already in routing table 1r2,

or if the new route is filtered out according to s2’s routing policy, S2 is unchanged,
and the routing message on the left-hand is consumed. Otherwise, the new route is in-
serted into the routing table (update (import (...), 1r2)), and S2 applies its export
policy export (import (...)) and then (if allowed by export policy and export does
not result in nilRoute) S2 re-advertises this new route to all of its neighbors nodes2.
Compared with the normal BGP protocol execution, this rule is simpler in the sense



that it does not perform best route selection: Note that BR: is kept blank. Normal BGP
execution is non-deterministic—depending on the result of route selection, one of three
different types of actions are taken [17], and the system may converge to different final
states or not terminate (route oscillation may happen due to conflicting best route selec-
tion). However, the process defined by rule compute-spp always terminates with the
same final state, when the complete sets of permitted paths of all nodes are generated.

Second, based on the permitted paths, the route selection function pref: is com-
puted as follows:
eqg compSPP ([S1 : AS1l |Nb: nodesl,LR: 1lrl, BR: nilRoute] Network) =
[ S1 : AS1 |Nb: nodesl, perPath: 1lrl, pref: compSPPNode (lrl)] compSPP (Network)
compSPP converts each dynamic router representation [S1:AS1|Nb:_,LR:_, BR:_]
in the network to its static form [ S1:AS1 |Nb:_, perPath:_, pref:_]. The crit-
ical part is to compute route selection compSPPNode (1rl), given the complete set
of subsets of the permitted paths 1r1, by applying the best route selection function
select to each subset. The function select is defined in terms of path attributes.
As example, we show here the encoding of the two eBGP attributes LOCAL_PREF and
AS_PATH as follows:
op select : Listroute —> Listroute .
eq select (1lrl) =

select-as (select-1f (1lrl, best-1f(lrl)),

best-as (select-1f(1lrl, best-1f(lrl))))

Here select first invokes best—-1f to compute the lowest (best) LOCAL_PREF value
in the permitted paths 1r1, then select-1f selects from 1r1 the set of routes with
this lowest LOCAL_PREF value. Next, from these remaining routes, select invokes
best-as to compute the best AS value and select—-as to select the set of routes with
such best as value.

5.2 Reduction by Merging All Pairs of Unifiable Nodes

To reduce a BGP instance, we take its static representation - a set of routers of the form [
S1:ASl |Nb:., perPath:_, pref:_] asinput, and repeatedly merge pairs of unifi-
able nodes. For each router s1 in the Network, we look for its unifiable nodes, if such
nodes exist, we unify s1 with the first unifiable node S2, and transform the rest of the
network according to Definition 4 (e.g. the neighbors of 51, S2 now become neighbors
of s1). This reduction process is implemented by the function mergeDupEach.?

First, mergeDupEach implements the process of unifying node S1 and its first-
found unifiable node as follows:

eq mergeDupEach ([ (S1:AS1) |[Nb:nodesl, perPath:1rl, pref:lsel-funl],
([(S2:AS2) |[Nb:nodes2, perPath:1r2, pref:lsel-fun2] C))

if (size(([(S1 : AS1l) |Nb: nodesl, perPath: 1lrl, pref: lsel-funl] unify
[(S2 : AS2) |Nb: nodes2, perPath: 1lr2, pref: lsel-fun2])) == 1)
then
(([(Sl:... ] unify [(S2:...]) C)
else
([(S2:...] mergeDupEach([(S1l:...], C)
fi .

2 Obviously, reduction always terminates. However, how the order of merging nodes affects the
reduction process—whether reduction always converges to the same reduced network—is the
subject of ongoing work, but does not affect correctness.



Here, the if condition tests if S1, S2 are unifiable, and mergeDupEach tests nodes in
the network ¢ until a unifiable node is found. Then mergeDupEachEachRW is invoked.

eqg mergeDupEachRW (abn, C) =

replaceNode (mergeDupEach (abn,C), get-NodeInfo (abn), findNodeInfo (abn, C)
Here, network C is transformed by replacing information relating to abn by that of
abn’s first unifiable node findNodeInfo (abn, C). The specific transformation is as
follows:

eq replaceNode ([SO:AS)|...] C, (S1:ASl) , (S2:AS2)) =
[(SO : AS) |Nb: removeRepeatedNB (..., (S1:AS1l), (S2:AS2)),
perPath: (replacePerPath(..., (S1:AS1), (S2:AS2))),
pref: replacePref (..., (S1:AS1), (S2:AS2))]
replaceNode (C, (S1:AS1l), (S2:AS2)

Here, each node so0 in the network is transformed by rewriting its neighboring table
(NB:), permitted path (perPath:), and route selection function (pref:).

Finally, putting it all together, mergeDup specifies the reduction process on the
entire network C as follows:
eq mergeDup (S1 0idl, C) =

mergeDupEachRW (get-Node (S1, mergeDup (0idl, C)),
mergeDup (0idl, C) - get-Node(S1l, mergeDup (0idl, C)))

Here mergeDup takes two inputs. The first argument S 0id1 is the list of router IDs,
and the second argument is the list of routers [ S1:AS1 [Nb:_, perPath:_, pref:_].
mergeDup (0idl, C) denotes the set of remaining routers after reducing all nodes
other than s1;if S1 is in these remaining routers, then get -Node (S1, mergeDup (0idl,
C)) denotes S1 itself, otherwise (that is, if S1 is removed in the reduction) the value is
set to nil. In either case, mergeDup (0idl, C) - get-Node (S1, mergeDup (0idl,
C)) denotes the remaining routers other than S1 after reducing all routers except S1.
Based on these notions, the recursive definition of mergeDup says that, to merge all
unifiable nodes, we only need to merge node S1 into the routers that (1) are already
reduced among themselves; and (2) do not contain S1 itself.

210
' B

Fig. 2. Reduction example

As an example, to perform network reduction to the network on the left of Figure
2, we execute in Maude as follows:
red mergeDup (N1 N2 N3 N4, Network)

Where Nodes = N1 N2 N3 N4 andNetwork = [N0:0 |Nb:_,LR:_,BR:_] [N1
1 ]...] ... [N5 : 5 |...].Theresultis as follows:



[NO : O |Nb: (N1 : 1) (N2 : 2),perPath: nil,pref: nil]
[Nl : 1 |Nb: N2 : 2,
perPath: (NO : 0,200,([2 0],[1,2],N2)
(NO : 0,100, (0], [1,0],NO0),
pref: ...]
[N2 : 2 |Nb: N1 : 1, ...]

As expected, nodes N3, N4 are merged into N2.

6 Evaluation

In this section, we provide an empirical study to quantify the benefits of network reduc-
tion, by comparing the computation time required in safety analysis with and without
network reduction.

Our safety analysis was performed via an exhaustive search strategy using Maude,
as described in [17]. Oscillation is detected if the same best route is selected multiple
times during protocol execution. To detect such recurring best routes, we use Maude
to run the actual path vector protocol used in BGP, and simulate all possible sequences
in which ASes receive routes. At each node, we use a monitor object to track the best
routes that have been previously selected. We also attempt to apply our reduction tech-
nique and perform such analysis on the reduced version.

For the BGP instance shown in Figure 2, we note that in the reduced network (right),
our analysis tool detect the same route oscillation pattern found in the original network
(left), while requiring significant less state (reduction from 956 to 35) and analysis time
(320ms to 8ms). In addition, we evaluate three common scenarios [10]: Bad gadget that
exhibits permanent oscillation, Disagree transient oscillation, and Good gadget that
is safe and no oscillation. For each scenario instances, the data tables in this section
indicate the performance requirements for the ordinary exhaustive search and for the
reduction alternative, as well as the final safety outcome.

| [Bad (reduced) [Bad-10  [Bad-20 [Bad-53 [Bad-83 [Bad-102 |

Search (Time) 30510ms Unknown [Unknown |[Unknown |Unknown |Unknown
SPP  generation|Oms 3ms 44ms 134ms 246ms 273ms
(Time)

Reduction (Time) |Oms 8ms 49ms 146ms 541ms 595ms
lSearch(State) ‘11118 ‘Unknown ‘Unknown ‘Unknown ‘Unknown ‘Unknown ‘
lOscillation? [Yes [Yes [Yes [Yes [Yes [Yes ‘

Table 2. Network Instances that Reduces to Bad Gadget

Our analysis was carried out on a Intel 2.40GHz dual-core machine with 1.9GB
memory, running Maude v2.4 on the Debian 5.0.6. operating system. Table 2 shows
the results of our reduction-based analysis, carried out on eBGP instances where the
number of ASes range from 10 (Bad-10) to 100 (Bad-100). For each network size,
we embed in a bad gadget. After apply the reduction process, all BGP instances are re-
duced to a single bad gadget Bad (reduced). For each entry, Unknown means that the



analysis cannot be completed within reasonable time (after running Maude for several
hours).

We make the following observations from our results. First, reduction requires min-
imal time. Even for a large network of 102 nodes, reduction can be completed within
one second. As input to the reduction process, the SPP formalism for a BGP instance is
extracted as described in Section 5 where a static representation (corresponding to the
SPP) is computed by simulating on the instance’s dynamic representation (correspond-
ing to the snapshot state). This is also an efficient process, requiring less than 300ms
for the largest network. Overall, network reduction results in significant savings in both
state and execution time during safety analysis. For example, while it was previously
infeasible to complete the analysis of any network beyond 10 nodes due to the state
explosion problem (depicted by Unknown), the reduced BGP instance can be analyzed
in around 300 seconds (and 11118 states).

In Appendix C, we present a similar comparison of analysis overhead for network
instances that have the disagree and good gadget embedded. We similarly observe sig-
nificant state and execution time savings via the use of reduction.

7 Conclusion

In this paper, we present a technique to reduce BGP instances, such that safety anal-
ysis can be performed efficiently on large networks. We prove correct our reduction
technique, develop a reduction and BGP analysis tool using Maude, and demonstrate
its effectiveness at reducing the state space and execution time required for analyzing
BGP instances. As future work, we are (1) exploring the use of our tool on larger case
studies drawn from real network configurations, (2) making the tool available with doc-
umentation, (3) optimizing the formal representation for more efficient analysis, and (4)
possibly extending the library to detect iBGP cyclic preference, and IGP-iBGP incon-
sistency.

Acknowledgment This research is funded in part by NSF grants (CCF-0820208, CNS-
0830949, CNS-0845552, CNS-1040672, TC-0905607 and CPS-0932397), AFOSR grant
FA9550-08-1-0352, and ONR grant NO0014-11-1-0555.

References

1. M. Clavel, F. Durén, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Talcott. All
About Maude: A High-Performance Logical Framework. Springer, 2007.

2. N. Feamster, R. Johari, and H. Balakrishnan. Implications of autonomy for the expressive-
ness of policy routing. In ACM SIGCOMM, 2005.

3. A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and B. Maggs. Locating Internet routing
instabilities. In ACM SIGCOMM, 2004.

4. A. Flavel, M. Roughan, N. Bean, and A. Shaikh. Where’s Waldo? Practical Searches for
Stability in iBGP. In Proc. International Conference on Network Protocols (ICNP), October
2008.



5. L. Gao, T. G. Griffin, and J. Rexford. Inherently safe backup routing with BGP. In /IEEE
INFOCOM, 2001.
6. L. Gao and J. Rexford. Stable Internet routing without global coordination. In ACM SIG-
METRICS, 2000.
7. T. G. Griffin. The stratified shortest-paths problem. In COMSNETS, 2010.
8. T. G. Griffin, A. Jaggard, and V. Ramachandran. Design principles of policy languages for
path vector protocols. In ACM SIGCOMM, 2003.
9. T. G. Griffin, F. B. Shepherd, and G. Wilfong. The stable paths problem and interdomain
routing. IEEE Trans. on Networking, 10:232-243, 2002.
10. T. G. Griffin and G. Wilfong. An analysis of BGP convergence properties. In SIGCOMM,
1999.
11. A. Haeberlen, I. Avramopoulos, J. Rexford, and P. Druschel. NetReview: Detecting when
interdomain routing goes wrong. In NSDI, 2009.
12. C. Labovitz, G. Malan, and F. Jahanian. Internet Routing Instability. TON, 1998.
13. J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical
Computer Science, 96(1):73-155, 1992.
14. M. Schapira, Y. Zhu, and J. Rexford. Putting BGP on the right path: A case for next-hop
routing. In ACM SIGCOMM HotNets, Oct. 2010.
15. J. Sobrinho. Network routing with path vector protocols: theory and applications. In SIG-
COMM, 2003.
16. M. Vutukuru, P. Valiant, S. Kopparty, and H. Balakrishnan. How to Construct a Correct and
Scalable iBGP Configuration. In IEEE INFOCOM, Barcelona, Spain, April 2006.
17. A. Wang, C. Talcott, L. Jia, B. T. Loo, and A. Scedrov. Analyzing bgp instances in maude.
In FMOODS-FORTE, 2011.

A Network Reduction

Example 2 Counter-Example Unifying nodes is not always possible: in Figure 3, nodes
3 and 4 are not unifiable.

Fig. 3. BGP system that cannot be reduced by merging duplicate nodes

Example 3 Reducing iBGP instances

The standard way to configure iBGP is for every router to be connected to every
other router, in a full mesh. The iBGP sessions exist purely to move routing information
from one side of the network to the other, without any decision-making happening in
the middle. This is shown schematically on the left of Figure 4, which also distinguishes



border routers (marked with e, having external connectivity) from routers that are purely
internal (marked with 7).

In the simplest case, all routers have the same policy, expressing identical route
preferences. For this simple case, we expect that we should be able to treat the entire
network as a single node, because the actual network layout has no impact on path
selection. Our reduction technique shows that this is the case: the full mesh is rewritten
to a star topology. (The iBGP reduction cannot eliminate the border routers, which are
part of the interface to the eBGP world—but future eBGP reductions could simplify
them away.)

Fig. 4. Reducing full-mesh iBGP: all internal routers are merged into one

B Correctness of Network Reduction

B.1 eBGP Correctness

The following lemma exhibits a structural property of path digraphs which will be used
in the proof of Lemma 3.

Lemma 2. Let P be a path digraph, containing a cycle which includes a transmission
arc. Then that cycle must contain at least four arcs.

Proof. Let (p,q) be the transmission arc. We cannot have another transmission arc
(¢, p), since all paths are simple. So the cycle must have three or more arcs. We show
by contradiction that it cannot have three arcs.

Suppose that there is a cycle consisting of arcs (p, ¢) as above, and two other arcs
(g,7) and (r, p). Again by the simple paths property, these cannot both be transmission
arcs. Equally, they cannot both be preference arcs, since p and q are paths from different
source nodes. There are two remaining cases.

1. If (g, ) is a preference arc and (r, p) is a transmission arc, then ¢ and r have the
same source node, say 4. This node must occur on p, since (r, p) is a transmission
arc. But (p, ¢) is also a transmission arc, and ¢ is not allowed to contain 7 twice.

2. If (r, p) is a preference arc and (g, ') is a transmission arc, then the same argument
applies. Paths r and p have the same source node, say j. This j must occur on ¢
from the transmission arc (p, ¢), but then we also have the transmission arc (g, ),
and r cannot contain j twice.



Therefore, a three-arc cycle is impossible. a

Lemma3. Let G = (V,E,d, P,<) be an SPP instance, containing unifiable nodes
w and v, and let G' = (V' E',d, P!, <’) be the result of applying the procedure of
Definition 4 to unify those two nodes. Then G is cyclic if and only if G’ is cyclic.

Proof. We first prove G is cyclic = G’ cyclic by case analysis. Assume the cyclic route

preference involves m paths: P¢ = {p1, - - - p,, } with source nodes S = {ny,---n,} C

V to destination d.

(1) If u,v & S then obvious G’ still contains P¢ and therefore is cyclic.

) Ifu ¢ S and v € S, then after merging u into v according to definition 4, G still

contains P¢ and therefore is cyclic.

(3)Ifu € Sandv € S, then after merging w into v, G’ contains cyclic route preference

P<". For each arc (pi,pj) in P°, we show that they will be transformed to an arc in pe

by considering the following three sub-cases

(3.1) If both paths p;, p; have origin u, then according to the definition of unifiable node

condition (3), we know the two paths are transformed but not collapsed into one path,

and the direction of preference arc is preserved over the transformed paths;

(3.2) If only of of the path has origin u, we know the other path does not have origin

v, and therefore, after reduction, only the path with origin u is transformed, and the

direction of the preference arc is preserved.

(3.3) If neither path has origin u, the reduction does not transform the path nor the arc,

and the arc is preserved.

(4)If u € Sand v € S. Like in (3), we show that after reduction, each preference arc

(ps,pj) in P° can be transformed in a corresponding arc in P, and therefore G’ is

cyclic. Consider the following sub-cases.

(4.1) If both p;, p; have origin u or v, as shown in (3.1), we know the arc will be pre-

served in P..

(4.2) If p; has origin u (v) and p; has origin v (u), according to 4 (3), consider the

following two sub-sub-cases:

421 If p, = wop',pj = vogq and p' is the sub-path of ¢/, and vice versa, then

reduction will transforms p;, p; to different paths, and the arc will be preserved in P

4.22)If p; =uop',p; = vuop, then p;, p; transforms to the the same path, and the

arc is removed from P... We show that after the removal of this arc, P still forms a

cycle. Prove by contradiction:

According to Lemma 2, there must exits another preference arc and path r. In the worst

case, after merging p into g, reduction will keep the two arcs (p, r) and (r, p). This con-

tradicts the definition of unifiable nodes condition (3).

(4.3) If only one of p;, p; has origin u or v, as in (3.2), the reduction preserves the arc.

(4.4) If neither path has origin  nor v, the reduction does not transform the path nor

the arc, and the arc is preserved. O
Then we prove G’ is cyclic = G cyclic.

According to reduction process in Definition 4, G contains all the paths, transmis-

sion/preference arcs in G’. As a result, any cycles in G's’s path digraph also appears in

G’s path diagraph. That is, if G’ is cyclic (its path diagraph contains a cycle), then G is

cyclic. a



B.2 iBGP correctness: Cyclic iBGP Route Preference

An unfortunate outcome of the BGP decision procedure is a corner case with the ‘MED’
attribute, where not all route preferences can be modelled by a total binary relation. This
is because, with MED, one can have three routes p, ¢ and r where p is preferred over ¢, ¢
over r, and r over p, all at the same router: the preferences are cyclic. This phenomenon
is associated with a specific family of protocol oscillations.

Our analysis in this subsection will use a more general notion of route selection,
which allows us to reason about these cases that are not definable in SPP terms. We
show that our reduction does preserve these kinds of preference cycle.

Definition 6 A route selection function for a node i is a function o, from the set of
nonempty subsets of P* to P*, such that 0(A) € Aforall() C A C P".

If route preferences are given by a total order <, then o just needs to select the
unique path that is minimal with respect to < from the given set. However, not all
selection functions can be represented by a total order in this way.

Definition 7 For a node © with route selection function o, say that o is (1-)consistent.

— consistent, if for all nonempty subsets A and B of P* where A C B, either 0(A) =
o(B) or o(B) is an element of B \ A.

— 1-consistent, if whenever A is a subset of P, and q € P\ A, either c(AU{q}) =
o(A)oro(AU{q}) =¢.

We say that 1 is consistent if its function o is consistent.
Proposition 2. A route selection function o is consistent if and only if it is 1-consistent.

Proof. If o is consistent then it is 1-consistent: just set B = A U {q} in the definition
of consistency.

For the reverse direction, suppose that o is 1-consistent. We prove consistency by
induction on the size of Q) = B\ A.

For the base case: For any sets A and B where () is a singleton, B = A U {q} for
some q ¢ A, and from 1-consistency we obtain consistency for A and B.

For the inductive step: Suppose that ¢ is consistent for all sets A and B where
|B\ A| = k. Now let A and B be such that |[B\ A| = k+ 1, and let ¢ be an element of
B\ A. Then o is consistent for AU{q} and B, by the inductive assumption, meaning that
either 0 (AU{q}) = o(B) oro(B) € B\ (AU{q}). We must show that o(A) = o(B),
oro(B) € B\ A.

If 0(B) isin B\ (AU{q}) then o(B) cannot be equal to anything in A; hence o(B)
isin B\ A as required.

Alternatively, if (A U {¢}) = o(B) then we can use 1-consistency: we know that
(A U {q}) is equal to o(A) or to g. Then either 0(A) = o(B), if it is the former, or
o(B) =q € B\ A, ifitis the latter.

Consequently o is consistent for A and B, and by induction it is consistent for all
subsets of P, O



We now define specific route selection functions for the iBGP decision process. Let
Tigp> Tmed(k) and oiggp, for a given node ¢, and AS neighbor £ of i’s network, be the
following functions on P*:

— 0Oigp chooses a path having the minimal ‘IGP distance to egress point’; that is, one
which has the shortest distance to any border router, out of the paths given.

— Omed(k) chooses, out of all given paths for which & is the next AS, one with the
minimal MED value.

— opcp combines these two functions:

0iBGP(A) = Tigp({Omeda(k) (Ax) | k is an AS neighbor})
where Ay, is the subset of A consisting of paths whose next AS hop is k.

The result is that oiggp implements the potentially problematic BGP decision rules,
in which MED and IGP distance can interact. The following lemma demonstrates the
inconsistency: although the other two functions are consistent, ojggp might not be.

Lemma 4. o,36p can be inconsistent.

Proof. See Figure 5. The routing policies of the instance are set by the following route
selection functions:

oipap({AB, AC}) = 0,,,({AB,AC}) = AC (1)
oisap({AB, ADE}) = 0,9,({AB, ADE}) = AB )
oipap({AC, ADEY) = 0mea({AC, ADE}) = ADE 3)

oiap({AB, AC, ADEY}) = 014, ({AB, 05,({AC, ADE})}) @)
= 019p({AB, ADE}) = AB (5)

Here the function ojpgp is inconsistent in lines (1) and (5). It prefers AC' when given
both AB and AC, but if it learns about ADFE as well, its best route switches to AB,
rather than sticking with AC or adopting the new ADE. O

The cyclic nature of the preferences in this example is revealed from the first three
lines: (1) says AC is better than AB, (2) says AB is better than ADE, but (3) says ADE
is better than AC. The inconsistency arises from the fact that different attributes are
being used to establish the preferences: MED in (3) overrides IGP distance.

We will now formalize this idea by showing that an inconsistent oiggp function
always leads to such a ‘cycle’. Conversely, if ojpgp is consistent then its preferences
can be implemented by a < relation.

Given a selection function o, derive a binary relation < by p < ¢ if and only if
p=0({p,q}) # q. This relation is called cyclic if there are paths p; through p,, where

p1 <p2=<p3 < <pp =<Dp1.

Otherwise, it is acyclic.
Given an AS A, considering its iBGP configuration: a router n’s permitted path P
are partitioned into P; - - - Py, for its k-neighboring ASes.



Fig. 5. Cyclic Route Preference Causes Oscillation

Lemma 5. Ifp and p’ are distinct paths for the same AS neighbor k, and p = 0 eqicy ({p, p'}),
then oipgp({p,0',---}) # .

Proof. By definition of oiggp. O
Proposition 3. o,p¢p is inconsistent if and only if < is cyclic.

Proof. First prove o;pgp is inconsistent = cyclic route preference.

Let R=RiU---URpwhere R; C P,.po € R

p1 = o(R) (conditionl)

Because 0;pgp is inconsistent, let (p3 = o(RU {p=2}) € R) (Condition2)

By case analysis based on whether p;, p3 are learned from the same neighboring AS,

we prove the cyclic preference: p3 < p2, p2 < p1,p1 < ps as follows:

(1) If py, p3 are from same AS, i.e. p; € R;,p3 € R;,i = j, then Condition 1 implies

D1 <med P3- By Proposition 5 we have o(RU {p2}) # ps which contradicts condition

2. Therefore, we know they must be from different ASes, as in Case 2.

(2) p1 € Ri,ps € Rj,i # j Considering two sub-cases based on whether or not

P1 <igp P3:

(2.1) p1 <igp p3 and Condition 2 implies p2 € R; A P2 <med P1 A P3 <igp P2, That is,

we have proved (ps < p2) A (p2 < p1) A (P1 < p3)

(2.2) p3 <igp p1 and condition 1 implies there exits p’ € Rs.t. p’ <imed P3AP1 <igp D'

By Proposition 5 we have o(R U {p2}) # p3 which contradicts condition 2. O
Then prove cyclic preference = o;pgp is inconsistent by proving its dual state-

ment: o; pgp is consistent = < is free of cyclic preference p; < ps2, -+ ,pn < p1.

Since 0;p¢p is consistent, for P, by definition, it forms an non-cyclic chain of prefer-

ence as follows:

oipep(P) < oipap(P — {oipar(P)}),

oigp(P—{oipap(P)}) < o(P—{oipap(P),0ipapr(P—{oipapr(P)})})--- O



Finally, suppose that we have an extended SPP tuple G = (V, E, d, P, <), derived
from iBGP, where < is derived from ojggp selection functions at each node according
to the definition above. If the selection functions are consistent. We say G is consis-
tent (1-consistent) if all the route selection functions are consistent (1-consistent); G
is inconsistent (1-inconsistent) if some of the route selection functions are inconsistent
(1-inconsistent).

Assume G reduces to G' = {V', E’, P’, <’} by merging two unifiable nodes u, v €
V as defined in Definition 4. To relate consistent/1-consistency property on G and G,
we have following theorems.

Lemma 6. G is I-consistent (I-inconsistent) <= G’ is I-consistent (I-inconsistent).

Proof. The reduction process 4, step 4, the direction of preference at each remaining is
not changed. Therefore G /G’ are either cyclic or acyclic. a

Theorem 2. If G’ is 1-inconsistent, then G suffers from cyclic o;pcp.

Proof. Obvious from lemma 6 and proposition 3. a

B.3 iBGP Correctness: IGP-iBGP Consistency Property

Consider the scenario in Figure 6. The iBGP instance consists of four nodes: the dashed
lines denote the BGP links, the solid lines the IGP links, and the numbers along the IGP
links denote the link costs. The IGP links carry traffic, whereas the iBGP links exist
in order to propagate routing information, so that the IGP can select the correct border
router as the egress point for each packet.

The nodes RR; and RR5 are ‘route reflectors’, and the nodes C'; and C, are clients
of RR; and RR; respectively. This means that they will always choose a route through
their local reflector, if possible. However, IGP route decisions are based on minimizing
the sum of link weights: so for C'; to reach RR;, the actual path taken will be C1Cs RR;
with a total cost of 2. Similarly, C5 will try to reach RRs by using the path CoC1 RRs.

The interaction between the IGP forwarding and the BGP routing policy results in
a forwarding loop. Packets from C'; to an external destination will be routed first to Co,
on the assumption that this is the best way to reach RR;. But ) is trying to reach RR»
instead, and so it forwards the data to C;. The end result is that the data never gets to
either reflector, and does not reach its destination.

Our reduction technique is unaware of this possibility: it sees only that nodes Cy
and Cy can be unified, according to their BGP policies. This unification removes the
problem, and so we would mark this instance as safe, when it actually has an undesirable
property. Therefore, to ensure the soundness of analysis, one should check IGP-iBGP
consistency before applying network reduction.



\ ! IGP (Interior
BGP | ! Gateway
iBGP within AS Protocol) cost

eBGP across AS decides distance
to exit point RR,RR,

Fig. 6. IGP-BGP Inconsistency: Network reduction will merge nodes C: and C> into one. As a
result, the route oscillation problem will be hidden if reduction is applied prior analysis.

C Additional Evaluation Results

l \Disagree Disagree-10|Disagree-20|Disagree-53|Disagree-83 | Disagree-102

Search (Time) 8ms 221193ms |Unknown |Unknown |Unknown |Unknown

SPP  generation|0ms 9ms 124ms 206ms 241ms 346ms

(Time)

Reduction (Time) |Oms 13ms 25ms 157ms 414ms 638ms

[Search (States)  [34 [310917 [Unknown [Unknown [Unknown [Unknown |
lOscillation? [Yes [Yes [Yes [Yes [Yes [Yes ‘

Table 3. BGP Instances that Reduces to Disagree

| |Good(reduced)Good-10 [Good-20 [Good-53 [Good-83 [Good-102

Search (Time) 2577Tms Unknown [Unknown |[Unknown |Unknown |Unknown
Static generation|Oms 7ms 25ms 102ms 216ms 291ms
(Time)

Reduction (Time) |Oms Sms 11ms 211ms 379ms 616ms
lSearch(State) [798 [Unknown [Unknown [Unknown [Unknown [Unknown ‘
lOscillation? \No \No \No \No \No \No ‘

Table 4. BGP Instances that Reduces to Good Gadget



